A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cysteine- and glycine-rich protein 3 regulates glucose homeostasis in skeletal muscle. | LitMetric

Skeletal muscle is the major site of postprandial peripheral glucose uptake, but in obesity-induced insulin-resistant states insulin-stimulated glucose disposal is markedly impaired. Despite the importance of skeletal muscle in regulating glucose homeostasis, the specific transcriptional changes associated with insulin-sensitive vs. -resistant states in muscle remain to be fully elucidated. Herein, using an RNA-seq approach we identified 20 genes differentially expressed in an insulin-resistant state in skeletal muscle, including cysteine- and glycine-rich protein 3 ( Csrp3), which was highly expressed in insulin-sensitive conditions but significantly reduced in the insulin-resistant state. CSRP3 has diverse functional roles including transcriptional regulation, signal transduction, and cytoskeletal organization, but its role in glucose homeostasis has yet to be explored. Thus, we investigated the role of CSRP3 in the development of obesity-induced insulin resistance in vivo. High-fat diet-fed CSRP3 knockout (KO) mice developed impaired glucose tolerance and insulin resistance as well as increased inflammation in skeletal muscle compared with wild-type (WT) mice. CSRP3-KO mice had significantly impaired insulin signaling, decreased GLUT4 translocation to the plasma membrane, and enhanced levels of phospho-PKCα in muscle, which all contributed to reduced insulin-stimulated glucose disposal in muscle in HFD-fed KO mice compared with WT mice. CSRP3 is a highly inducible protein and its expression is acutely increased after fasting. After 24h fasting, glucose tolerance was significantly improved in WT mice, but this effect was blunted in CSRP3-KO mice. In summary, we identify a novel role for Csrp3 expression in skeletal muscle in the development of obesity-induced insulin resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139493PMC
http://dx.doi.org/10.1152/ajpendo.00435.2017DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
glucose homeostasis
12
insulin resistance
12
muscle
9
cysteine- glycine-rich
8
glycine-rich protein
8
glucose
8
insulin-stimulated glucose
8
glucose disposal
8
insulin-resistant state
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!