Biodegradables Chitosan-based Nanoparticles (CS NPs) have been extensively studied as delivery system for therapeutic molecules and as efficient carriers or adjuvants in experimental vaccination. Physicochemical association between CS NPs and antigens is a key step for the biological function as carrier devices. However, for the adjuvant CS NPs property, it is not well known if coupling with vaccine antigens is required or not to potentiate the immune response. To address this issue, in this work, we evaluated the potential adjuvant effect of CS NPs by simply mixing with two different antigens such as Bovine Serum Albumin (BSA) or E protein from Dengue Virus serotype 2 (E protein DENV2). Thus the CS NPs were prepared by ionic gelation with sodium tripolyphosphate, resulting particles among 68 and 188 nm of size. Immunization of 6–8 week old female BALB/c mice, were carried out by intraperitoneal route with a simple combination of CS NPs either with BSA (CS NPs-BSA) at 10 μg or with E protein DENV2 (CS NPs-Protein E) at 5 μg. Combinations with the above antigens with CS NPs elicited robust specific primary and secondary humoral responses comparable to alum, a well-known adjuvant. BSA-specific IgG titers were detectable by day 14 after priming with the CS NPs-BSA formulation, with titers that ranged from 102 to 103 EU ml-. After a second immunization, the anti-BSA titers ranged around 104 EU ml-. In contrast, in the group of mice immunized with the protein alone, BSA-specific serum IgG titers were undetectable at day 14 and 28. For the immunizations with the CS NPs-E protein formulation, we observed also a remarkable specific-antibody production in the primary response, with titers reaching 103 EU ml-. After the booster immunization the anti-E protein DENV2 antibodies titers reached peak values around 104 EU ml-. Interestingly, for both antigens, the combination with CS NPs polarized the immune response to a Th2-like profile, which is characterized mainly by the production of the IgG1 Isotype, confirming that CS NPs can enhance and modulate the humoral immune responses against different antigens independently of physicochemical conjugation. This could represent a simplification in the use of CS NPs as adjuvants in vaccination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2017.13067 | DOI Listing |
Vector Borne Zoonotic Dis
January 2025
Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China.
Dengue virus (DENV) infection, caused by serotypes DENV 1-4, represents a significant global public health challenge, with no antiviral drugs currently available for treatment. The host Protein kinase B (AKT) signaling pathway is crucial for DENV infection, presenting a potential target for antiviral drug development. This study aimed to evaluate the antiviral activity of kinase inhibitors that target the AKT pathway, focusing on the compound AT13148.
View Article and Find Full Text PDFViruses
December 2024
Laboratorio de Medicina de Conservación de la Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis, Colonia Casco de Santo Tomas, Ciudad de Mexico 11340, Mexico.
Chikungunya virus (CHIKV) is classified as a pathogen with the potential to cause a pandemic. This situation becomes more alarming since no approved drug exists to combat the virus. The present research aims to demonstrate the anti-CHIKV activity of molecules present in the latex of .
View Article and Find Full Text PDFViruses
December 2024
Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan.
This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.
View Article and Find Full Text PDFMicroorganisms
December 2024
Program in Public Health, School of Medicine, University of California, Irvine, CA 92617, USA.
, a major vector of dengue virus (DENV), has a global distribution. Identifying the key components of the ubiquitin system of essential for the replication of viruses could help identify targets for developing broad-spectrum antiviral strategies. This study explores the interaction between E2 ubiquitin-conjugating enzymes (Ubc9) and DENV-2 proteins (NS1, NS5, and E) using cell culture and mosquito models.
View Article and Find Full Text PDFNat Commun
January 2025
Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
The standard dengue virus (DENV) neutralization assay inconsistently predicts dengue protection. We compare how IgG ELISA, envelope domain III (EDIII), or non-structural protein 1 (NS1) binding antibodies, and titers from plaque reduction neutralization tests (PRNTs) using standard and mature viruses are associated with dengue. The ELISA measures IgG antibodies that bind to inactivated DENV1-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!