Polymer microgels with a dense outer shell offer outstanding features as universal carriers for different guest molecules. In this paper, microgels formed by an interpenetrating network comprised of collapsed and swollen subnetworks are investigated using dissipative particle dynamics (DPD) computer simulations, and it is found that such systems can form classical core-corona structures, shell-corona structures, and core-shell-corona structures, depending on the subchain length and molecular mass of the system. The core-corona structures consisting of a dense core and soft corona are formed at small microgel sizes when the subnetworks are able to effectively separate in space. The most interesting shell-corona structures consist of a soft cavity in a dense shell surrounded with a loose corona, and are found at intermediate gel sizes; the area of their existence depends on the subchain length and the corresponding mesh size. At larger molecular masses the collapsing network forms additional cores inside the soft cavity, leading to the core-shell-corona structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm00170g | DOI Listing |
Langmuir
December 2024
School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
The unique core-corona structure of raspberry-like particles makes it an ideal template for the fabrication of golf ball-like particles by selective removal of the corona particles. However, few types of raspberry-like polymer-polymer core-corona composite particles have been used as the templates, probably because it is relatively difficult to synthesize well-defined raspberry-like polymer-polymer composite particles. We describe, for the first time, the fabrication of golf ball-like polymer particles by colloidal etching of raspberry-like poly(glycidyl methacrylate)-polystyrene (PGMA-PS) composite particles in a tetrahydrofuran (THF)/water medium with a higher THF concentration.
View Article and Find Full Text PDFSoft Matter
December 2024
Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague 2, Czech Republic.
Biguanide-based cationic polyelectrolytes are used as key components of interpolyelectrolyte complexes bolstering alginate hydrogel microcapsules employed in cell therapies. Nevertheless, electrostatic complexation of these unique polycations has not been studied before. In this study, the interaction between biguanide condensates and anionic polyelectrolytes with carboxylate groups was studied on a model system of a metformin condensate (MFC) and an anionic diblock polyelectrolyte poly(methacrylic acid)--poly(ethylene oxide) (PMAA-PEO).
View Article and Find Full Text PDFBiomacromolecules
October 2024
Université de Bordeaux, CNRS, Bordeaux INP, Laboratoire de chimie des polymères organiques (LCPO), UMR 5629, F-33600 Pessac, France.
Macromolecules
July 2024
Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
Macromol Rapid Commun
June 2024
Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada.
Smart nanoassemblies degradable through the cleavage of acid-labile linkages have attracted significant attention because of their biological relevance found in tumor tissues. Despite their high potential to achieve controlled/enhanced drug release, a systematic understanding of structural factors that affect their pH sensitivity remains challenging, particulary in the consruction of effective acid-degradable shell-sheddable nanoassemblies. Herein, the authors report the synthesis and acid-responsive degradation through acid-catalyzed hydrolysis of three acetal and ketal diols and identify benzaldehyde acetal (BzAA) exhibiting optimal hydrolysis profiles in targeted pH ranges to be a suitable candidate for junction acid-labile linkage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!