Multiscale FEM simulations of cross-linked actin network embedded in cytosol with the focus on the filament orientation.

Int J Numer Method Biomed Eng

Institute of Biomechanics, Graz University of Technology, Stremayrgasse 16-II, Graz, 8010, Austria.

Published: July 2018

The present contribution focuses on the application of the multiscale finite element method to the modeling of actin networks that are embedded in the cytosol. These cell components are of particular importance with regard to the cell response to external stimuli. The homogenization strategy chosen uses the Hill-Mandel macrohomogeneity condition for bridging 2 scales: the macroscopic scale that is related to the cell level and the microscopic scale related to the representative volume element. For the modeling of filaments, the Holzapfel-Ogden β-model is applied. It provides a relationship between the tensile force and the caused stretches, serves as the basis for the derivation of the stress and elasticity tensors, and enables a novel finite element implementation. The elements with the neo-Hookean constitutive law are applied for the simulation of the cytosol. The results presented corroborate the main advantage of the concept, namely, its flexibility with regard to the choice of the representative volume element as well as of macroscopic tests. The focus is particularly placed on the study of the filament orientation and of its influence on the effective behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.2993DOI Listing

Publication Analysis

Top Keywords

embedded cytosol
8
filament orientation
8
finite element
8
representative volume
8
volume element
8
multiscale fem
4
fem simulations
4
simulations cross-linked
4
cross-linked actin
4
actin network
4

Similar Publications

Origins of Ultrasensitivity and Complex Signaling Dynamics of Cellular Hydrogen Peroxide and Peroxiredoxin.

Antioxidants (Basel)

February 2025

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.

Hydrogen peroxide (HO) plays a crucial role in cell signaling in response to physiological and environmental perturbations. HO can oxidize typical 2-Cys peroxiredoxin (PRX) first into a sulfenic acid, which resolves into a disulfide that can be reduced by thioredoxin (TRX)/TRX reductase (TR). At high levels, HO can also hyperoxidize sulfenylated PRX into a sulfinic acid that can be reduced by sulfiredoxin (SRX).

View Article and Find Full Text PDF

Sequestration of dead-end undecaprenyl phosphate-linked oligosaccharide intermediate.

Microbiology (Reading)

January 2025

School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia.

Most Gram-negative bacteria synthesize a plethora of cell surface polysaccharides that play key roles in immune evasion, cell envelope structural integrity and host-pathogen interactions. In the predominant polysaccharide Wzx/Wzy-dependent pathway, synthesis is divided between the cytoplasmic and periplasmic faces of the membrane. Initially, an oligosaccharide composed of 3-8 sugars is synthesized on a membrane-embedded lipid carrier, undecaprenyl pyrophosphate, within the cytoplasmic face of the membrane.

View Article and Find Full Text PDF

Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA.

View Article and Find Full Text PDF

STIM1 and lipid interactions at ER-PM contact sites.

Am J Physiol Cell Physiol

January 2025

Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.

Store-operated calcium (Ca) entry (SOCE) represents a major route of Ca permeation across the plasma membrane (PM) in nonexcitable cells, which plays an indispensable role in maintaining intracellular Ca homeostasis. This process is orchestrated through the dynamic coupling between the endoplasmic reticulum (ER)-localized Ca sensor stromal interaction molecule 1 (STIM1) and the PM-resident ORAI1 channel. Upon depletion of ER Ca stores, STIM1 undergoes conformational rearrangements and oligomerization, leading to the translocation of activated STIM1 toward the PM.

View Article and Find Full Text PDF
Article Synopsis
  • Dimeric nicotinamide nucleotide transhydrogenase (NNT) is a crucial enzyme located in the mitochondrial inner membrane, involved in converting NADP/NADH to NADPH/NAD while facilitating proton influx, but its specific roles and regulation in health and diseases like cancer are still not thoroughly understood.! -
  • Research on NNT has been conducted through studies on gene mutations in specific models (like GCCD4 patients and C57BL/6J mice) and effects of NNT alterations in cancer cells, revealing both common and unique functional issues, yet information on NNT's physiological role in humans remains limited.! -
  • To advance understanding of NNT's functions and effects in various conditions, future
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!