NaF Reduces KLK4 Gene Expression by Decreasing Foxo1 in LS8 Cells.

Biol Trace Elem Res

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, 98 XiWu Road, Xi'an, 710004, People's Republic of China.

Published: December 2018

Decreased expression and increased phosphorylation of Forkhead box o1 (Foxo1) in ameloblasts were observed both in vivo and in vitro when treated by fluoride. The present study aims to investigate the possible relationship between Foxo1 and enamel matrix proteinases, matrix metalloproteinase 20 (MMP20), and kallikrein 4 (KLK4), in NaF-treated ameloblasts. Ameloblast-like cells (LS8 cells) were exposed to NaF at selected concentration (0/2 mM) for 24 h. Gene overexpression and silencing experiments were used to up- and down-regulate Foxo1 expression. The expression levels of Foxo1, MMP20, and KLK4 were detected by quantitative real-time PCR and western blot. Dual luciferase reporter assay was performed to evaluate the regulation of Foxo1 on the transcriptional activity of KLK4 promoter. The results showed that KLK4 expression was decreased in LS8 cells treated by NaF, while MMP20 expression was not changed. Foxo1 activation led to significantly up-regulation of KLK4 in LS8 cells under NaF condition. Knockout of Foxo1 markedly decreased klk4 expression in mRNA level, and intensified inhibition occurred in LS8 cells when combined with NaF treatment. However, the variation trend of MMP20 was not clear. Dual luciferase reporter assay showed that Foxo1 activation enhanced the transcriptional activity of KLK4 promoter. These findings suggest that the decrease of Foxo1 expression induced by high fluoride was a cause for low KLK4 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-018-1325-yDOI Listing

Publication Analysis

Top Keywords

ls8 cells
20
klk4 expression
12
foxo1
10
klk4
9
expression
9
foxo1 expression
8
dual luciferase
8
luciferase reporter
8
reporter assay
8
transcriptional activity
8

Similar Publications

[WWP1 plays a positive role in ameloblast differentiation and enamel formation in mice].

Zhonghua Kou Qiang Yi Xue Za Zhi

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan430079, China.

Article Synopsis
  • The study focuses on the role of WWP1, a protein ligase, in the enamel development of mice.
  • Single-cell RNA sequencing and immunohistochemistry showed that WWP1 is highly expressed in dental epithelial cells, specifically in ameloblasts involved in enamel formation.
  • Wwp1 knockout mice displayed significant enamel developmental defects, including reduced enamel volume and disorganized enamel structures compared to control mice.
View Article and Find Full Text PDF

Enamel protects teeth from external irritation and its formation involves sequential differentiation of ameloblasts, a dental epithelial cell. Keratinocyte differentiation factor 1 (KDF1) is important in the development of epithelial tissues and organs. However, the specific role of KDF1 in enamel formation and corresponding regulatory mechanisms are unclear.

View Article and Find Full Text PDF

Fluoride Alters Gene Expression via Histone H3K27 Acetylation in Ameloblast-like LS8 Cells.

Int J Mol Sci

September 2024

Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA.

Article Synopsis
  • - Fluoride ingestion during tooth development can lead to dental fluorosis, and it activates histone acetyltransferase (HAT), which modifies the protein p53 and contributes to fluoride toxicity in specific mouse cells (LS8).
  • - The study showed that fluoride modifies histone acetylation, altering gene expression in LS8 cells, as evidenced by increased acetylation levels of certain genes and corresponding mRNA expression when treated with fluoride.
  • - This research is the first to highlight that fluoride treatment can lead to epigenetic changes through H3 acetylation, indicating a need for further investigation into how fluoride affects enamel development on a genetic level.
View Article and Find Full Text PDF

Epigallocatechin-3-gallate attenuates fluoride induced apoptosis via PI3K/FoxO1 pathway in ameloblast-like cells.

Toxicon

August 2024

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China. Electronic address:

Fluoride is a double-edged sword. It was widely used for early caries prevention while excessive intake caused a toxicology effect, affected enamel development, and resulted in dental fluorosis. The study aimed to evaluate the protective effect and mechanism of Epigallocatechin-3-gallate (EGCG) on the apoptosis induced by fluoride in ameloblast-like cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!