Nonconductive layered hexagonal boron nitride exfoliation by bipolar electrochemistry.

Nanoscale

Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Published: April 2018

AI Article Synopsis

  • Boron nitride (h-BN) is gaining interest for its unique properties and is similar to graphite, with methods being developed to create few-layered nanosheets.
  • The study introduces a novel bipolar electrochemical method that efficiently exfoliates bulk h-BN, a previously assumed impossible task for insulators.
  • This new technique provides a scalable and versatile approach for working with layered non-conductive materials, expanding potential applications in electronics and biomedical fields.

Article Abstract

Boron nitride (h-BN), which is an isoelectronic analogue of graphite, has received immense attention due to its unique physical and chemical properties. Numerous methods have been developed to isolate few-layered h-BN nanosheets. These include chemical vapour deposition, solution-based exfoliation and ball-milling amongst others. The bipolar electrochemical method is one of the popular, scalable and water based exfoliation methods which has been applied to graphite, layered transition metal dichalcogenides and black phosphorus. This method was not applied to insulators as this has been assumed to be an impossible task. In this study, we report a solution-based, scalable and time efficient bipolar electrochemical method for the direct exfoliation of bulk insulator, layered h-BN into few-layered h-BN nanosheets based on bipolar electrochemistry. The electrochemical exfoliation of nonconductive materials, h-BN, opens the way to the application of this scalable method to the whole spectrum of non-conductive layered materials. This facile method offers an alternative platform for h-BN electrochemical exfoliation in wide-ranging fields encompassing electronics and biomedical science.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr00082dDOI Listing

Publication Analysis

Top Keywords

boron nitride
8
bipolar electrochemistry
8
few-layered h-bn
8
h-bn nanosheets
8
bipolar electrochemical
8
electrochemical method
8
electrochemical exfoliation
8
exfoliation
6
h-bn
6
method
5

Similar Publications

Two-dimensional layered materials (2DLMs) have received increasing attention for their potential in bioelectronics due to their favorable electrical, optical, and mechanical properties. The transformation of the planar structures of 2DLMs into complex 3D shapes is a key strategic step toward creating conformal biointerfaces with cells and applying them as scaffolds to simultaneously guide their growth to tissues and enable integrated bioelectronic monitoring. Using a strain-engineered self-foldable bilayer, we demonstrate the facile formation of predetermined 3D microstructures of 2DLMs with controllable curvatures, called microrolls.

View Article and Find Full Text PDF

Heteropolar two-dimensional materials, including hexagonal boron nitride (hBN), are promising candidates for seawater desalination and osmotic power harvesting, but previous simulation studies have considered bare, unterminated nanopores in molecular dynamics (MD) simulations. There is presently a lack of force fields to describe functionalized nanoporous hBN in aqueous media. To address this gap, we conduct density functional theory (DFT)-based ab initio MD simulations of hBN nanopores surrounded by water molecules.

View Article and Find Full Text PDF

Challenges in Synthesizing Hexagonal Boron Nitride "Quantum" Dots.

Nano Lett

January 2025

School of Physics, Xidian University, No. 2 Taibai South Road, Xi'an 710071, China.

Fluorescent nanodots derived from hexagonal boron nitride (-BN) have garnered significant attention over the past decade. As a result, various synthesis methods─encompassing both bottom-up hydrothermal reactions and top-down exfoliation processes─have been deemed "successful" in producing BN nanodots. Nevertheless, this Perspective emphasizes that substantial challenges remain in the synthesis of "true" nanodots composed mainly of -BN units, as many so-called successful syntheses reported in the literature involve some mischaracterizations.

View Article and Find Full Text PDF

This study investigated silicone composites with distributed boron nitride platelets and carbon microfibers that are oriented electrically. The process involved homogenizing and dispersing nano/microparticles in the liquid polymer, aligning the particles with DC and AC electric fields, and curing the composite with IR radiation to trap particles within chains. This innovative concept utilized two fields to align particles, improving the even distribution of carbon microfibers among BN in the chains.

View Article and Find Full Text PDF
Article Synopsis
  • The paper examines two tool materials for machining Inconel 718, made using different sintering methods: High Pressure-High Temperature (HPHT) and Spark Plasma Sintering (SPS).
  • One material, BNT, is predominantly cubic boron nitride and showed significant changes in phase composition post-sintering; the other, AZW, maintained a similar composition throughout.
  • Both composites demonstrated high mechanical properties, with BNT displaying a higher Young's modulus and hardness than AZW, and both were effective in machining but differed in performance and cost.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!