Selective trapping of CO gas and cage occupancy in CO-N and CO-CO mixed gas hydrates.

Chem Commun (Camb)

Groupe Spectroscopie Moléculaire, Institut des Sciences Moléculaires, UMR 5255 CNRS-Univ., Bordeaux-351, cours de la Libération F-33404 TALENCE Cedex, France.

Published: April 2018

Hydrate-based CO2 trapping from CO2-N2 and CO2-CO gas mixtures is shown by Raman spectroscopy - the results are of interest for new separation and capture technology. A better trapping efficiency is measured for low CO2 concentrations and N2-based gas mixtures. Moreover, it is observed that CO molecules would impede hydrate formation from ice when a CO-enriched gas mixture is considered.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cc00538aDOI Listing

Publication Analysis

Top Keywords

gas mixtures
8
gas
5
selective trapping
4
trapping gas
4
gas cage
4
cage occupancy
4
occupancy co-n
4
co-n co-co
4
co-co mixed
4
mixed gas
4

Similar Publications

In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.

View Article and Find Full Text PDF

The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.

View Article and Find Full Text PDF

While gas chromatography mass spectrometry (GC-MS) has long been used to identify compounds in complex mixtures, this process is often subjective and time-consuming and leaves a large fraction of seemingly good-quality spectra unidentified. In this work, we describe a set of new mass spectral library-based methods to assist compound identification in complex mixtures. These methods employ mass spectral uniqueness and compound ubiquity of library entries alongside noise reduction and automated comparison of retention indices to library compounds.

View Article and Find Full Text PDF

The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.

View Article and Find Full Text PDF

The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!