Hydrate-based CO2 trapping from CO2-N2 and CO2-CO gas mixtures is shown by Raman spectroscopy - the results are of interest for new separation and capture technology. A better trapping efficiency is measured for low CO2 concentrations and N2-based gas mixtures. Moreover, it is observed that CO molecules would impede hydrate formation from ice when a CO-enriched gas mixture is considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cc00538a | DOI Listing |
RSC Adv
January 2025
Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran.
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China.
The physical separation of CH from CO on metal-organic frameworks (MOFs) has received a substantial amount of research interest due to its advantages of simplicity, security, and energy efficiency. However, the exploitation of ideal MOF adsorbents for CH/CO separation remains a challenging task due to their similar physical properties and molecular sizes. Herein, we report a unique CH nano-trap constructed using accessible oxygen and nitrogen sites, which exhibits energetic favorability toward CH molecules.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8362, United States.
While gas chromatography mass spectrometry (GC-MS) has long been used to identify compounds in complex mixtures, this process is often subjective and time-consuming and leaves a large fraction of seemingly good-quality spectra unidentified. In this work, we describe a set of new mass spectral library-based methods to assist compound identification in complex mixtures. These methods employ mass spectral uniqueness and compound ubiquity of library entries alongside noise reduction and automated comparison of retention indices to library compounds.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The tolerance and degradation characteristics of a marine oil-degrading strain Acinetobacter sp. Y9 were investigated in the presence of diesel oil and simulated radioactive nuclides (Mn, Co, Ni, Sr, Cs) at varying concentrations, as well as exposure to γ-ray radiation (Co-60). The maximum tolerable concentrations for Coand Ni were found to be 5 mg/l and 25 mg/l, respectively, while the tolerable concentrations for Mn, Sr, and Cs exceeded 400 mg/l, 1000 mg/l, and 1000 mg/l, respectively.
View Article and Find Full Text PDFChem Biodivers
December 2024
Department of Biochemistry, Government College Women University, Faisalabad, Pakistan.
The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!