Efforts to develop drugs for Alzheimer's disease (AD) have shown promise in animal studies, only to fail in human trials, suggesting a pressing need to study AD in human model systems. Using human neurons derived from induced pluripotent stem cells that expressed apolipoprotein E4 (ApoE4), a variant of the APOE gene product and the major genetic risk factor for AD, we demonstrated that ApoE4-expressing neurons had higher levels of tau phosphorylation, unrelated to their increased production of amyloid-β (Aβ) peptides, and that they displayed GABAergic neuron degeneration. ApoE4 increased Aβ production in human, but not in mouse, neurons. Converting ApoE4 to ApoE3 by gene editing rescued these phenotypes, indicating the specific effects of ApoE4. Neurons that lacked APOE behaved similarly to those expressing ApoE3, and the introduction of ApoE4 expression recapitulated the pathological phenotypes, suggesting a gain of toxic effects from ApoE4. Treatment of ApoE4-expressing neurons with a small-molecule structure corrector ameliorated the detrimental effects, thus showing that correcting the pathogenic conformation of ApoE4 is a viable therapeutic approach for ApoE4-related AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948154PMC
http://dx.doi.org/10.1038/s41591-018-0004-zDOI Listing

Publication Analysis

Top Keywords

gain toxic
8
small-molecule structure
8
structure corrector
8
apoe4-expressing neurons
8
effects apoe4
8
apoe4
7
neurons
6
human
5
toxic apolipoprotein
4
effects
4

Similar Publications

Quercetin, a flavonoid found in vegetables and fruits, has been extensively studied for its health benefits and disease management. Its role in the prevention of various pathogenesis has been well-documented, primarily through its ability to inhibit oxidative stress, inflammation, and enhance the endogenous antioxidant defense mechanisms. Electronic databases such as Google Scholar, Scopus, PubMed, Medline, and Web of Science were searched for information regarding quercetin and its role in various pathogeneses.

View Article and Find Full Text PDF

Study on the In Vitro and In Vivo Antioxidant Activity and Potential Mechanism of L.

Antioxidants (Basel)

January 2025

Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou 730050, China.

Oxidative stress refers to the phenomenon in which the redox balance of the body is disrupted in response to stimuli, leading to an excessive accumulation of reactive oxygen species in vivo, which can lead to a variety of diseases. In contrast to artificial antioxidants, whose safety is controversial, natural antioxidants, which are widely available, pharmacologically active, and have little toxic side effects, are expected to be candidates for the treatment of oxidative stress-related diseases. L.

View Article and Find Full Text PDF

Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.

View Article and Find Full Text PDF

The objective of this review is to investigate the impacts of aflatoxins, particularly aflatoxin B1 (AFB), on intestinal microbiota, intestinal health, and growth performance in monogastric animals, primarily chickens and pigs, as well as dietary interventions to mitigate these effects. Aflatoxin B1 contamination in feeds disrupts intestinal microbiota, induces immune responses and oxidative damage, increases antioxidant activity, and impairs jejunal cell viability, barrier function, and morphology in the small intestine. These changes compromise nutrient digestion and reduce growth performance in animals.

View Article and Find Full Text PDF

Fusarium mycotoxins often co-occur in broiler feed, and their presence negatively impacts health even at subclinical concentrations, so there is a need to identify the concentrations of these toxins that do not adversely affect chickens health and performance. The study was conducted to evaluate the least toxic effects of combined mycotoxins fumonisins (FUM), deoxynivalenol (DON), and zearalenone (ZEA) on the production performance, immune response, intestinal morphology, and nutrient digestibility of broiler chickens. A total of 960 one-day-old broilers were distributed into eight dietary treatments: T1 (Control); T2: 33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!