AI Article Synopsis

Article Abstract

, a successful human pathogen, utilizes multiple carbon sources from the host but adapts to a fatty-acid-rich environment We sought to delineate the physiologic response of to a lipid-rich environment by using differentiated adipocytes as a model system. Global transcriptome profiling based on RNA sequencing was performed for bacilli from infected adipocytes and preadipocytes. Genes involved in fatty acid synthesis were downregulated, while those predicted to be involved in triglyceride biosynthesis were upregulated, in bacilli isolated from adipocytes, indicating reliance on host-derived fatty acids. Transcription factor network analysis indicated suppression of IdeR-regulated genes, suggesting decreased iron uptake by in the adipocyte model. This suppression of iron uptake coincided with higher ferritin and iron levels in adipocytes than in preadipocytes. In accord with the role of iron in mediating oxidative stress, we observed upregulation of genes involved in mitigating oxidative stress in isolated from adipocytes. We provide evidence that oleic acid, a major host-derived fatty acid, helps reduce the bacterial cytoplasm, thereby providing a safe haven for an mutant that is sensitive to iron-mediated oxidative stress. Via an independent mechanism, host ferritin is also able to rescue the growth of this mutant. Our work highlights the inherent synergy between macronutrients and micronutrients of the host environment that converge to provide resilience to the pathogen. This complex synergy afforded by the adipocyte model of infection will aid in the identification of genes required by in a caseous host environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964510PMC
http://dx.doi.org/10.1128/IAI.00041-18DOI Listing

Publication Analysis

Top Keywords

adipocyte model
12
oxidative stress
12
adipocytes preadipocytes
8
genes involved
8
fatty acid
8
isolated adipocytes
8
host-derived fatty
8
iron uptake
8
host environment
8
iron
5

Similar Publications

This study explores the relationship between specific SARS-CoV-2 mutations and obesity, focusing on how these mutations may influence COVID-19 severity and outcomes in high-BMI individuals. We analyzed 205 viral mutations from a cohort of 675 patients, examining the association of mutations with BMI, hospitalization, and mortality rates. Logistic regression models and statistical analyses were applied to assess the impact of significant mutations on clinical outcomes, including inflammatory markers and antibody levels.

View Article and Find Full Text PDF

: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes.

View Article and Find Full Text PDF

Homeobox C4 transcription factor promotes adipose tissue thermogenesis.

Diabetes

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.

The homeobox (HOX) family has shown potential in adipose development and function, yet the specific HOX proteins fueling adipose thermogenesis remain elusive. In this study, we uncovered the novel function of HOXC4 in stimulating adipose thermogenesis. Our bioinformatic analysis indicated an enrichment of Hoxc4 co-expressed genes in metabolic pathways and linked HOXC4 polymorphisms to metabolic parameters, suggesting its involvement in metabolic regulation.

View Article and Find Full Text PDF

Metabolic syndrome is a clustering of metabolic abnormalities and anthropometric factors that increase the risk of cardiovascular disease and type 2 diabetes mellitus. As the search for effective treatments intensifies, attention has turned towards natural substances with potential medicinal benefits. Among them, vanillic acid, a phenolic acid present in many plants, has attracted some attention due to its wide range of biological activities.

View Article and Find Full Text PDF

Understanding the Role of Irisin in Longevity and Aging: A Narrative Review.

Epidemiologia (Basel)

January 2025

Biotechnology Research, Innovation and Design for Health Products (BRIDGES), Research Laboratory on Epidemiology and Population Health, Polytechnic of Guarda Av. Dr. Francisco Sá Carneiro 50, 6300-559 Guarda, Portugal.

Irisin is a protein resulting from a proteolytic cleavage of fibronectin type III domain-containing protein 5 (FND5). The ability of irisin to modulate adipocyte and control glucose metabolism in human metabolic diseases gave rise to the hypothesis that irisin could have a pivotal role in aging-related diseases. Although in animal models, increased levels of irisin have been positively associated with better health outcomes, in humans, its role remains controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!