The novel iodinated ligand [125I]-N-(p-aminophenethyl)spiroperidol ([125I]NAPS) was used to identify the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland. The binding of [125I]NAPS was of high affinity and saturable, given that the dissociation constant and the maximal binding were 34.7 +/- 4.8 pM and 21.1 +/- 2.5 fmol/mg of protein, respectively. The ability of dopaminergic agonists and antagonists to compete with [125I]NAPS varied markedly with incubation temperature. The marked decrease of the molar potency associated with increasing incubation temperature in the competitive displacement curve suggested that the binding of five agonists, dopamine, (-)-apomorphine, (-)-n-propylnorapomorphine, N-0434, and LY-171555, to the D-2 dopamine receptor was enthalpy-driven, with a negative change in entropy. In contrast, the binding of three antagonists, fluphenazine, (+)-butaclamol, and domperidone, was entropy-driven, with positive change in entropy, suggesting less temperature-sensitive change in the molar potency. Several molecules gave unanticipated results; the molar potency of two dopamine agonists, bromocriptine and lisuride, was much less temperature-sensitive than the other agonists used in this study. The thermodynamic parameters for the atypical agonists indicated entropy-driven binding. Conversely, the molar potency of (+)-apomorphine, a dopamine receptor antagonist, was markedly affected by incubation temperature, indicating enthalpy-driven binding. Another antagonist, YM-09151-2, was affected by the inclusion of sodium chloride in the assay system: in the absence of sodium chloride, the drug was relatively weak and displayed enthalpy-driven binding; in the presence of sodium chloride, its molar potency was increased and its binding manner turned into entropy-driven.

Download full-text PDF

Source

Publication Analysis

Top Keywords

molar potency
20
dopamine receptor
16
d-2 dopamine
12
incubation temperature
12
sodium chloride
12
binding
9
lobe rat
8
rat pituitary
8
pituitary gland
8
markedly incubation
8

Similar Publications

Oligosaccharide-assisted resolution of holothurian fucosylated chondroitin sulfate for fine structure and P-selectin inhibition.

Carbohydr Polym

March 2025

School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:

Fucosylated chondroitin sulfate (FCS) from Holothuria mexicana (FCS) was selected for investigation because of its intriguing branch features. Selective β-eliminative depolymerization and the bottom-up assembly were performed to unravel that FCS consisted of a {D-GlcA-β1,3-D-GalNAc} backbone and branches of alternating Fuc (55 %) and D-GalNAc-α1,2-L-Fuc (45 %), the highest proportion of disaccharide branch reported to date. In branches, sulfation could occur at every free -OH site except O-3 of GalNAc, being the most complex and various structure features of natural FCS.

View Article and Find Full Text PDF

Selective Mu-Opioid Receptor Imaging Using F-Labeled Carfentanils.

J Med Chem

January 2025

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States.

Carfentanil, a highly potent synthetic opioid, paradoxically serves as a crucial positron emission tomography (PET) imaging tool in neurobiological studies of the mu-opioid receptor (MOR) system when labeled with carbon-11 ([C]CFN). However, its clinical research use is hindered by extreme potency and the limited availability of short-lived carbon-11 ( = 20.4 min).

View Article and Find Full Text PDF

Incorporation of ionizable lipids into the outer shell of lipid-coated calcium phosphate nanoparticles boosts cellular mRNA delivery.

Int J Pharm

February 2025

Department of Medical BioSciences, Radboud University Medical Center, The Netherlands; Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain. Electronic address:

Messenger RNA is a highly promising biotherapeutic modality with great potential in preventive and therapeutic vaccination, and in the modulation of cellular function through transient expression of therapeutic proteins. However, for cellular delivery, mRNA requires packaging into delivery vehicles that mediate uptake and also shield the mRNA against degradation. Lipid-coated calcium phosphate (LCP) nanoparticles encapsulate the mRNA in a calcium phosphate core, which is coated by a bilayer of structural lipids, positively charged lipids and pegylated lipid to mediate cellular uptake and achieve colloidal stabilization.

View Article and Find Full Text PDF

The design and synthesis of unique two series of fluorinated sulfonamides 3a-f and 5a-g utilizing nucleophilic aromatic substitution reactions of tetrafluorophthalonitrile 1 with various sulfonamides 2 under a variety of different reactions conditions were the key goals of the current research. The chemical composition of the generated products has been investigated via mass spectroscopy, HNMR, CNMR, infrared, and elemental analyzes. Antimicrobial studies were conducted in vitro to evaluate the activity of all new synthesized compounds against resistant strains.

View Article and Find Full Text PDF
Article Synopsis
  • - This research focuses on green methods to react levofloxacin (LF) with various dicarboxylate acids, studying their effects on LF's stability, solubility, and antimicrobial effectiveness for the first time.
  • - The study utilized solvent-dropped grinding with 95% ethanol for preparation, significantly reducing solvent use compared to traditional methods, and confirmed the interaction between LF and the acids using techniques like FTIR and 1H-NMR.
  • - Results showed that the LF-dicarboxylate salts produced had improved solubility, stability, and antibacterial potency compared to LF alone, indicating promising potential for new drug formulations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!