Background: The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) has followed the international rise in obesity rates. Multiple mechanisms are involved in NAFLD, including endoplasmic reticulum stress and oxidative stress. Heat shock protein 70 (HSP70), which is abundant in most organisms, is sensitive to stress. However, the role of HSP70 in NAFLD has not been investigated. Here, we investigated the possible role of HSP70 in lipid synthesis.
Methods: C57BL/6 mice were fed a high-fat diet, and HepG2 cells were treated with 0.5 mM palmitic acid (PA). HSP70 expression was detected by qPCR, Western blot and immunohistochemistry. Total cholesterol (TC) and triglyceride (TG) levels were detected by enzyme-linked immunosorbent assay (ELISA). After Hsp70 overexpression and knockdown, TC and TG levels and FAS, SCD, and ACC expression were detected.
Results: HSP70 expression was significantly increased in the livers of obese mice. In vitro, HSP70 expression was markedly induced by PA in HepG2 cells. Notably, HSP70 overexpression in HepG2 cells enhanced TC and TG synthesis, in parallel with the upregulation of lipogenic genes, including FAS, SCD and ACC. By contrast, HSP70 knockdown decreased the levels of cellular lipids and the expression of FAS, SCD, and ACC in HepG2 cells. Together, our results suggest that HSP70 may promote lipogenesis in HepG2 cells.
Conclusions: Heat shock protein 70 promotes lipogenesis in HepG2 cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891916 | PMC |
http://dx.doi.org/10.1186/s12944-018-0722-8 | DOI Listing |
BMC Pharmacol Toxicol
January 2025
Biochemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Background: Naringenin, a flavonoid compound found in citrus fruits, possesses valuable anticancer properties. However, its potential application in cancer treatment is limited by poor bioavailability and pharmacokinetics at tumor sites. To address this, Naringenin nanoparticles (NARNPs) were prepared using the emulsion diffusion technique and their anticancer effects were investigated in HepG2 cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
Hepatocellular carcinoma (HCC) necessitates innovative prognostic biomarkers and therapeutic targets. By investigating PNMA1 in HCC via the TCGA and GEO databases and our clinical data, we found that its overexpression is associated with worse survival. The relevance of PNMA1 extends to immune factors such as M1 macrophages, CD8 T cells, and immune checkpoints.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
In this study, we delve into the intrinsic mechanisms of cell communication in hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we analyze multiple malignant cell subpopulations and cancer-associated fibroblast (CAF) subpopulations, revealing their interplay through receptor-ligand interactions, with a particular focus on SPP1. Subsequently, employing unsupervised clustering analysis, we delineate two clusters, C1 and C2, and compare their infiltration characteristics using various tools and metrics, uncovering heightened cytotoxicity and overall invasion abundance in C1.
View Article and Find Full Text PDFBr J Cancer
January 2025
Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
Background: Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death.
Methods: Hepatoma cells were treated with oxaliplatin.
Mol Divers
January 2025
College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China.
A series of novel isatin-oxime ether derivatives were designed, synthesized and characterized by H NMR and C NMR and HRMS. These compounds were evaluated for their in vitro cytotoxicity against three human cancer cell lines (A549, HepG2 and Hela) by MTT assay. According to the experimental results, compounds 6a (IC = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!