The endocannabinoid system (ECS) regulates cellular homeostasis and whole-body metabolism. There is an autonomous ECS in the endocrine pancreas, including the cannabinoid 1 receptor (CBR) that is present in β-cells. Here, we discuss conflicts that have arisen with regard to the function(s) of the ECs in the endocrine pancreas and that have caused confusion when defining the role of the ECS in islets of Langerhans, especially the role(s) of CBR in β-cells. We also discuss the latest data published concerning the ECS in islets. CBR in particular is not simply a negative modulator of insulin secretion as it is also involved in intra-islet inflammation during high fat-high sugar intake and it is a negative regulator of β-cell viability and turnover. We also discuss the feasibility of using CBR as a target for the treatment of diabetes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139496 | PMC |
http://dx.doi.org/10.1152/ajpendo.00338.2017 | DOI Listing |
Methods Cell Biol
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:
Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Clinical Science, SUS, Division of Islet Cell Physiology, University of Lund, Malmö, Sweden.
The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Pharmacology and Toxicology, Metabolic Diseases Research Laboratory, School of Dentistry, Kyung Hee University, Seoul-02447, Republic of Korea.
Objective: This study evaluated the renoprotective effects of p-Coumaric acid nanoparticles (PCNPs) in nephropathic rats.
Methods: Six groups of male Albino Wistar rats were randomly assigned. Group 1 was the control, while Group 2 received 45 mg/kg of streptozotocin (STZ) to induce diabetic nephropathy.
Acta Physiol (Oxf)
February 2025
UR Diabète et Thérapeutiques, Centre européen d'étude du Diabète, Université de Strasbourg, Strasbourg, France.
Aim: Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!