Sphingosine-1-phosphate pathway in renal fibrosis.

Am J Physiol Renal Physiol

Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.

Published: October 2018

Renal fibrosis is defined as the excessive deposition and modification of extracellular matrix (ECM) in the renal parenchyma in response to injury and inflammation, resulting in renal function loss. This condition is common to many chronic kidney diseases occurring under diverse pathological conditions, such as diabetic and hypertensive nephropathy. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in the regulation of cardiovascular functions and the pathogenesis of various cardiovascular diseases. S1P has also been considered an important regulator of fibrotic diseases, playing significant roles in the differentiation of fibroblasts to myofibroblasts and in the induction of inflammatory responses during the early stages of fibrotic diseases. This minireview summarizes recent research findings regarding the importance of the sphingosine kinase-1-S1P-S1P receptor axis and its interactions with other classic fibrotic signaling pathways and the immune inflammatory response to reveal novel therapeutic targets for the treatment or prevention of renal fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6230725PMC
http://dx.doi.org/10.1152/ajprenal.00596.2017DOI Listing

Publication Analysis

Top Keywords

renal fibrosis
12
fibrotic diseases
8
renal
5
sphingosine-1-phosphate pathway
4
pathway renal
4
fibrosis renal
4
fibrosis defined
4
defined excessive
4
excessive deposition
4
deposition modification
4

Similar Publications

mTOR/p70S6K signaling pathway promotes fibrillin-1 expression in AKI-to-CKD transition post CA/CPR.

Cell Signal

January 2025

School of Basic Medicine, Jiamusi University, Jiamusi 154007, PR China. Electronic address:

The possible involvement of mTOR/p70S6K signaling in mediating Fibrillin-1 expression during the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). A CA/CPR AKI model was established using male C57BL/6 mice aged 8-12 weeks. The expression of Fibrillin-1 and activation of the mTOR/p70S6K signaling pathway in kidney tissues were assessed at different time points.

View Article and Find Full Text PDF

Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.

View Article and Find Full Text PDF

Background: Kidney fibrosis is a suggested cause of kidney failure and premature mortality. Because collagen type VI is closely linked to kidney fibrosis, we aimed to evaluate whether urinary endotrophin, a collagen type VI fragment, is associated with graft failure and mortality among kidney transplant recipients (KTR).

Methods: In this prospective cohort study, KTR with a functioning graft ≥1-y posttransplantation were recruited; 24-h urinary endotrophin excretion was measured using an ELISA method.

View Article and Find Full Text PDF

Renal fibrosis is one of the main pathological features of chronic kidney disease (CKD), and its treatment has been a hot research topic. Recent studies have shown that stem cell therapy can repair renal pathological changes and slow the progression of CKD. In addition, a large number of experiments have confirmed that traditional Chinese medicine (TCM), especially Chinese medicine compound preparations, has the advantage of multitargeting interventions to improve renal fibrosis.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!