Jatropha seeds can be used to produce high-quality biodiesel due to their high oil content. However, Jatropha produces low numbers of female flowers, which limits seed yield. Paclobutrazol (PCB), a plant growth retardant, can increase number of Jatropha female flowers and seed yield. However, the underlying mechanisms of flower development after PCB treatment are not well understood. To identify the critical genes associated with flower development, the transcriptome of flower buds following PCB treatment was analyzed. Scanning Electron Microscope (SEM) analysis revealed that the flower developmental stage between PCB-treated and control flower buds was similar. Based on the presence of sex organs, flower buds at 0, 4, and 24 h after treatment were chosen for global transcriptome analysis. In total, 100,597 unigenes were obtained, 174 of which were deemed as interesting based on their response to PCB treatment. Our analysis showed that the JcCKX5 and JcTSO1 genes were up-regulated at 4 h, suggesting roles in promoting organogenic capacity and ovule primordia formation in Jatropha. The JcNPGR2, JcMGP2-3, and JcHUA1 genes were down-regulated indicating that they may contribute to increased number of female flowers and amount of seed yield. Expression of cell division and cellulose biosynthesis-related genes, including JcGASA3, JcCycB3;1, JcCycP2;1, JcKNAT7, and JcCSLG3 was decreased, which might have caused the compacted inflorescences. This study represents the first report combining SEM-based morphology, qRT-PCR and transcriptome analysis of PCB-treated Jatropha flower buds at different stages of flower development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2018.03.035 | DOI Listing |
Biomed Chromatogr
February 2025
Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
An increased risk of developing respiratory diseases has been linked to exposure to cigarette smoking (CS). The flower buds of Tussilago farfara L., also known as Farfarae Flos (FF), can be used for the treatment of cough, bronchitis, and asthmatic disorders in China.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Horticulture, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
Willd. is an evergreen tree native to South Africa. Historically, the tree has been used for the treatment of various diseases and has been scientifically found to have promising pharmacological effects.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Instituto de Biotecnología, UEDD INTA CONICET, Buenos Aires 1686, Argentina.
Leaf senescence in plants is the last stage of leaf development and is characterized by a decline in photosynthetic activity, an active degeneration of cellular structures, and the recycling of accumulated nutrients to areas of active growth, such as buds, young leaves, flowers, fruits, and seeds. This process holds economic significance as it can impact yield, influencing the plant's ability to maintain an active photosynthetic system during prolonged periods, especially during the grain filling stage, which affects plant weight and oil content. It can be associated with different stresses or environmental conditions, manifesting itself widely in the context of climate change and limiting yield, especially in crops of agronomic relevance.
View Article and Find Full Text PDFMolecules
December 2024
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Aging and Metabolism Research Group, Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea.
Vascular smooth muscle cells (VSMCs) undergo metabolic pathway transitions, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, which are important for their function. Metabolic dysfunction in VSMCs can lead to age-related vascular diseases. -GlcNAcylation, a nutrient-dependent posttranslational modification linked specifically to glucose metabolism, plays an important role in this context.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!