A wide variety of genetically encoded fluorescent biosensors are available to date. Some of them have already contributed significantly to our understanding of biological processes occurring at cellular and organismal levels. Using such an approach, outstanding success has been achieved in the field of redox biology. The probes allowed researchers to observe, for the first time, the dynamics of important redox parameters in vivo during embryogenesis, aging, the inflammatory response, the pathogenesis of various diseases, and many other processes. Given the differences in the readout and spectra of the probes, they can be used in multiparameter imaging in which several processes are monitored simultaneously in the cell. Intracellular processes form an extensive network of interactions. For example, redox changes are often accompanied by changes in many other biochemical reactions related to cellular metabolism and signaling. Therefore, multiparameter imaging can provide important information concerning the temporal and spatial relationship of various signaling and metabolic processes. In this review, we will describe the main types of genetically encoded biosensors, the most frequently used readout, and their use in multiplexed imaging mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.004 | DOI Listing |
Int J Colorectal Dis
January 2025
Department of Medical Ultrasound, West China Hospital of Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
Purpose: This study aimed to explore a combined transrectal ultrasound (TRUS) and radiomics model for predicting tumor regression grade (TRG) after neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC).
Methods: Among 190 patients with LARC, 53 belonged to GRG and 137 to PRG. Eight TRUS parameters were identified as statistically significant (P < 0.
Comput Methods Programs Biomed
January 2025
Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Background And Objective: Neurosurgical navigation is a critical element of brain surgery, and accurate segmentation of brain and scalp blood vessels is crucial for surgical planning and treatment. However, conventional methods for segmenting blood vessels based on statistical or thresholding techniques have limitations. In recent years, deep learning-based methods have emerged as a promising solution for blood vessel segmentation, but the segmentation of small blood vessels and scalp blood vessels remains challenging.
View Article and Find Full Text PDFClin Nucl Med
January 2025
Department of Hematology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Purposes: This study aims to investigate the diagnostic performance of combining 68Ga-pentixafor PET with MRI to differentiate primary central nervous system lymphoma (PCNSL) from glioblastoma (GBM), particularly focusing on atypical lymphoma identification.
Patients And Methods: Seventy-one PCNSL and 53 GBM patients who underwent both 68Ga-pentixafor PET/CT and MRI were retrospectively included. We evaluated the quantitative imaging parameters and MRI features of positive lesions, identifying atypical PCNSL by hemorrhage, necrosis, or heterogeneous enhancement.
Sci Rep
December 2024
Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
This study aimed to establish and validate a multiparameter prediction model for Ki67 expression in hepatocellular carcinoma (HCC) patients while also exploring its potential to predict the one-year recurrence risk. The clinical, pathological, and imaging data of 83 patients with HCC confirmed by postoperative pathology were analyzed, and the patients were randomly divided into a training set (n = 58) and a validation set (n = 25) at a ratio of 7:3. All patients underwent a magnetic resonance imaging (MRI) scan that included multi-b value diffusion-weighted scanning before surgery, and quantitative parameters were obtained via intravoxel incoherent motion (IVIM) and diffusion kurtosis (DKI) models.
View Article and Find Full Text PDFBrain Res
December 2024
Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China. Electronic address:
Introduction: Prior researches have reported abnormal changes of thalamus in patients with subcortical ischemic vascular disease (SIVD), which was usually analyzed as a whole. However, it was currently unclear whether the structure, function and connectivity of thalamic subregions were differentially affected by this disease and affected different cognitive functions.
Methods: This study recruited 30 SIVD patients with cognitive impairment (SIVD-CI), 30 SIVD patients with cognitive unimpaired (SIVD-CU) and 32 normal controls.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!