There are growing concerns that antibiotic pollution impacts environmental microbiota and facilitates the propagation of antibiotic resistance. However, the prediction or analytical determination of bioavailable concentrations of antibiotics in soil is still subject to great uncertainty. Biological assays are increasingly recognized as valuable complementary tools that allow a more direct determination of the residual antibiotic activity. This study assessed the bioavailability of structurally diverse antibiotics at a soil-water interface applying activity-based analyses in conjunction with equilibrium partitioning (EqP) modeling. The activity against Gram-positive and Gram-negative bacteria of nine antibiotics from different classes was determined in the presence and absence of standard soil (LUFA St. 2.2). The addition of soil affected the activity of different antibiotics to highly varying degrees. Moreover, a highly significant correlation ( p < 0.0001) between the experimentally observed and the EqP-derived log EC (half-maximal effective concentration) values was observed. The innovative experimental design of this study provided new insights on the bioavailability of antibiotics at soil-water interfaces. EqP appears to be applicable to a broad range of antibiotics for the purpose of screening-level risk assessment. However, EqP estimates cannot replace soil-specific ecotoxicity testing in higher-tier assessments, since their accuracy is still compromised by a number of factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.7b06329 | DOI Listing |
Can J Microbiol
January 2025
Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada;
Agricultural practices, specifically the use of antibiotics and other biocides, have repercussions on human, animal and plant health. The aim of this study was to evaluate the levels of Enterobacteriaceae and Enterococcus, as antibiotic resistant marker bacteria, in various matrices across the agro-ecosystem of an antibiotic-free swine farm in Quebec (Canada), namely pig feed, feces, manure, agricultural soil, water and sediment from a crossing stream, and soil from nearby forests. Samples were collected in fall 2022, spring and fall 2023 and spring 2024.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
Antibiotics are chemicals with bactericidal or bacteriostatic activity produced by microorganisms and artificially synthesized. Since the discovery of penicillin by Alexander Fleming in 1928, antibiotics have been widely used in clinical treatments as well as in the animal husbandry and aquaculture, leading to antibiotic residues in soil, water, food and other environments. At the same time, antibiotic resistance is increasingly serious, which necessitates the discovery of novel antibiotics.
View Article and Find Full Text PDFFront Antibiot
May 2024
Department of Food and Animal Sciences, Tennessee State University, Nashville, TN, United States.
Introduction: The increase of antimicrobial resistance (AMR) in zoonotic pathogens poses a substantial threat to both animal production and human health. Although large-scale animal farms are acknowledged as major reservoirs for AMR, there is a notable knowledge gap concerning AMR in small-scale farms. This study seeks to address this gap by collecting and analyzing 137 fecal samples from goat and sheep farms in Tennessee and Georgia.
View Article and Find Full Text PDFJ Glob Antimicrob Resist
December 2024
College of Life Sciences, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom; Department of Biomedical Science, School of Basic and Biomedical Science, University of Health and Allied Sciences, Ho, Ghana.
Objectives: The prevalence of antimicrobial resistance (AMR) among Gram-negative bacteria is a major global health concern. Resistance to last-resort antibiotics like colistin is particularly alarming. This study reviews how environmental factors have contributed to colistin resistance in the African context, where reports of colistin-resistant Gram-negative organisms are emerging.
View Article and Find Full Text PDFJ Hazard Mater
February 2025
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China. Electronic address:
In this study, the laccase-mimicking enzyme MnO/Cu-BDC-His was synthesized by a facile procedure, and was applied in tetracycline antibiotics (TCs) identification and dye degradation. The MnO/Cu-BDC-His nanozymes effectively recognized phenolic hydroxyl groups in TCs and catalyzed the generation of colored oxidation products with different characteristic absorbance peaks at 350 nm, 525 nm and 600 nm. Different TCs mixtures produced different absorbance intensities at the above wavelengths and exhibited cross-color responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!