This study was carried out to evaluate the neuroprotective activity of polysaccharide extracts isolated from Perilla frutescens (PEPF) in HO-treated HT22 hippocampus cells. The PEPF treatment was found to increase the anti-oxidant activities of HT22 hippocampus cells. PEPF treatment resulted in a significant protection of HT22 hippocampus cells against HO-induced neurotoxicity, this protection ultimately occurred through an inhibition of ROS-mediated intracellular Ca levels leading to MAPKs and NF-κB, as well as the accumulation of PI3K/AKT and Nrf2-mediated HO-1/NQO1 pathways. Furthermore, PEPF not only decreased the expression of Bax, cytochrome c, and cleaved caspases-3, -8, and -9, but also increased the expression of PARP and Bcl-2 in the HO-treated HT22 hippocampus cells, which overall contributed to the neuroprotective action. PEPF retains its mitochondrial membrane potential and reduces the elevated levels of sub-G1 phase and apoptotic morphological features induced by HO. It also reduces the malondialdehyde levels and enhances the intracellular SOD activity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2018.1460572DOI Listing

Publication Analysis

Top Keywords

ht22 hippocampus
20
hippocampus cells
20
perilla frutescens
8
ho-treated ht22
8
cells pepf
8
pepf treatment
8
ht22
5
hippocampus
5
cells
5
pepf
5

Similar Publications

The nervous system is highly dependent on the supply of oxygen and nutrients, so when demand for oxygen exceeds its supply, hypoxia is induced. The hippocampus is very important in the nervous system. It has the ability to control human behavior, memory, emotion, and so on.

View Article and Find Full Text PDF

Microcystin-LR (MC-LR), a prevalent cyanotoxin present in hazardous cyanobacterial blooms, is recognized as a neurotoxic environmental pollutant that induces brain damage and neurobehavioral deficits. However, the mechanisms underlying MC-LR-induced neurotoxicity remain unclear. This study aims to elucidate the role of mitophagy in MC-LR-induced neurotoxicity both in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction plays a critical role in diseases like neurodegeneration, especially during events like oxygen-glucose deprivation followed by reoxygenation.
  • In a study on HT22 cells, melatonin was found to protect mitochondria from damage and oxidative stress caused by this OGD/R condition, maintaining important enzymatic functions.
  • Melatonin not only lowered inflammatory markers related to mitochondrial damage but also enhanced the release of fibroblast growth factor-21, suggesting its potential as a protective agent in ischemic brain injury.
View Article and Find Full Text PDF

Cognitive impairment is a vital complication of chronic kidney disease (CKD). The effect of irisin on CKD-induced cognitive impairment remains unclear. In the present study, we aimed to investigate the role of Irisin in mitigating cognitive impairment and explore the underlying mechanisms in CKD.

View Article and Find Full Text PDF

Unveiling Smyd-2's Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion.

Cells

November 2024

School of Pharmacy, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 201203, China.

SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis-a regulated form of cell death driven by lipid peroxidation-remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!