δ-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that δ-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind δ-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that δ-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that δ-catenin plays a key role in EGFR stability and downstream signaling. δ-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of δ-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5935102 | PMC |
http://dx.doi.org/10.14348/molcells.2018.2292 | DOI Listing |
PLoS One
January 2025
School of Public Health, Anhui University of Science and Technology, Hefei, China.
A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of General and Transplant Surgery, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
: Chronic antibody-mediated rejection (cAMR) constitutes a serious challenge in the long-term success of organ transplantation. It is associated with donor-specific antibodies (DSAs) which activate a complement pathway in response to the presence of human leukocyte antigens (HLAs) on the graft, which results in chronic inflammation and leads to graft dysfunction. One of the recent promising methods of cAMR treatment is a recombinant humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody referred to as Tocilizumab (TCZ).
View Article and Find Full Text PDFMolecules
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
The overexpression of the epidermal growth factor receptor (EGFR) in certain types of prostate cancers and glioblastoma makes it a promising target for targeted radioligand therapy. In this context, pairing an EGFR-targeting peptide with the emerging theranostic pair comprising the Auger electron emitter cobalt-58m (Co) and the Positron Emission Tomography-isotope cobalt-55 (Co) would be of great interest for creating novel radiopharmaceuticals for prostate cancer and glioblastoma theranostics. In this study, GE11 (YHWYGYTPQNVI) was investigated for its EGFR-targeting potential when conjugated using click chemistry to N1-((triazol-4-yl)methyl)-N1,N2,N2-tris(pyridin-2-ylmethyl)ethane-1,2-diamine (TZTPEN).
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA.
Recurrent tumors that are resistant to conventional chemotherapy are a major challenge of ovarian cancer treatment. A better understanding of the underlying molecular mechanisms of chemoresistance is critical for developing more effective targeted therapies for ovarian cancer. In this study, we analyzed the transcriptomic profiles of thirteen pairs of matching primary and recurrent ovarian cancers to identify genes that were upregulated in the recurrent tumors.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Cleveland Clinic, Cleveland, OH, United States.
Epidermal growth factor receptor (EGFR) is a highly expressed driver of many cancers, yet the utility of EGFR inhibitors is limited to cancers that harbor sensitizing mutations in the EGFR gene due to dose limiting toxicities. Rather than conventionally blocking the kinase activity of EGFR, we sought to reduce its transcription as an alternative approach to broaden the therapeutic window for EGFR inhibitors targeting wildtype or mutant EGFR. We found that YES1 is highly expressed in triple negative breast cancer (TNBC) and drives cell growth by elevating EGFR levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!