Accelerated gait decline in aging is associated with many adverse outcomes, including an increased risk for falls, cognitive decline, and dementia. Yet, the brain structures associated with gait speed, and how they relate to specific cognitive domains, are not well-understood. We examined structural brain correlates of gait speed, and how they relate to processing speed, executive function, and episodic memory in three non-demented and community-dwelling older adult cohorts (Overall N = 352), using voxel-based morphometry and multivariate covariance-based statistics. In all three cohorts, we identified gray matter volume covariance patterns associated with gait speed that included brain stem, precuneus, fusiform, motor, supplementary motor, and prefrontal (particularly ventrolateral prefrontal) cortex regions. Greater expression of these gray matter volume covariance patterns linked to gait speed were associated with better processing speed in all three cohorts, and with better executive function in one cohort. These gray matter covariance patterns linked to gait speed were not associated with episodic memory in any of the cohorts. These findings suggest that gait speed, processing speed (and to some extent executive functions) rely on shared neural systems that are subject to age-related and dementia-related change. The implications of these findings are discussed within the context of the development of interventions to compensate for age-related gait and cognitive decline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6177326 | PMC |
http://dx.doi.org/10.1007/s11682-018-9871-7 | DOI Listing |
BMC Geriatr
January 2025
James P. Wilmot Cancer Institute, Rochester, New York, USA.
Background: Older adults with cancer are vulnerable to declines in muscle performance (e.g., strength, speed, duration of muscular contraction), which are associated with worse cancer-related outcomes.
View Article and Find Full Text PDFJ Orthop Sci
January 2025
Department of Orthopaedic Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan.
Background: A walking support orthosis known as the e-foot®, a rubber orthotic worn from the hip to the forefoot to enhance joint flexibility and movement, has been developed to assist elderly people and individuals with walking impairments. Despite its widespread acceptance and positive reception in some care settings, the precise impact of this device on gait dynamics remains unexplored. This study aims to bridge this gap by comparing the walking speeds of healthy volunteers using the e-foot® against their normal walking speeds.
View Article and Find Full Text PDFEBioMedicine
January 2025
Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden; Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden.
Background: A better understanding of body-brain links may provide insights on targets for preventing cognitive decline. The aim was to explore associations of body composition with neuroimaging biomarkers and cognitive function among dementia-free 70-year-olds.
Methods: Dual-energy X-ray absorptiometry body composition measures in relation to neuroimaging measures of cortical thickness, hippocampal volume, small vessel disease, predicted brain age, and cognitive performance were explored in a cross-sectional study of 674 dementia-free 70-year-olds from the Swedish Gothenburg H70 Birth Cohort study.
J Nutr Health Aging
January 2025
Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea. Electronic address:
Background: Based on the compelling experimental evidence supporting apelin's beneficial effects on muscle metabolism, our study aimed to evaluate the role of circulating apelin levels as a biomarker for muscle health in humans.
Methods: This investigation employed a cross-sectional design, encompassing 237 community-dwelling older adults aged ≥65 years who underwent comprehensive geriatric evaluations in South Korea. Sarcopenia diagnosis was based on Asian-specific criteria, and serum apelin concentrations were determined using enzyme immunoassay techniques.
J Nutr Health Aging
January 2025
The Center of Gerontology and Geriatrics and National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, China. Electronic address:
Objectives: Motor cognitive risk (MCR) syndrome, defined as the cooccurrence of subjective cognitive complaints and a slow gait speed, is a form of pre-dementia condition. Balance has previously been associated with cognitive function. However, to date, no study has examined the relationship between balance and MCR in a large cohort of older adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!