Aim: The body mass index (BMI), the most used anthropometric index of obesity, has an important limitation, not taking into consideration the distribution of body fat. We developed a new simple index: the waist-corrected BMI (wBMI), calculated as waist circumference (WC) × BMI. The study aim was to assess the role of wBMI, compared to BMI, WC, and Waist-to-Height Ratio (WHtR) in predicting abnormal cardiac geometry, insulin resistance, increased arterial stiffness, and dyslipidemia.
Methods: This was a cross-sectional study that included 805 patients referred to our Department of Preventive Cardiology for risk factors evaluation and treatment. Eleven echographic and laboratory parameters were determined, and receiver operating characteristic (ROC) curves were derived. Areas under ROC curves (AUC) were used to assess the accuracy of the four indexes to identify unfavorable characteristics.
Results: There were 29% overweight, 59% obese, and 77% hypertensive patients. Of 11 echographic and laboratory parameters, wBMI, BMI, WHtR, and WC had the largest AUC for identifying 3, 1, 6, and 1 parameters, respectively, but with overlapping 95% confidence intervals. wBMI had the largest AUC for increased arterial stiffness and insulin resistance; also, it was superior to BMI for increased left atrial volume, relative wall thickness, and triglyceride level.
Conclusions: In a large population with a high prevalence of obesity and hypertension, all four indexes were associated with unfavorable characteristics. wBMI has the theoretical advantage of taking into account simultaneously the global fat mass and distribution and might be useful for a better cardiovascular risk assessment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5875131 | PMC |
http://dx.doi.org/10.4103/jcecho.jcecho_63_17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!