Objective: The effect of 10% sodium ascorbate, 10% α-tocopherol, 10% grape seed extract, and 10% guava seed extract solutions on the shear bond strength (SBS) of composite resin to bleached enamel was evaluated.
Materials And Methods: Labial enamel surfaces of 72 extracted maxillary central incisors were bleached using 37.5% hydrogen peroxide. Sixty-four specimens were divided into four experimental groups (Group I-IV) comprising 16 specimens each and remaining eight specimens were placed in Group V. Groups I-IV were further divided into 2 subgroups: A (10 min) and B (120 min) comprising 8 specimens each. Eight unbleached specimens served as control (Group VI). Immediately following bleaching, Groups IA-IVA and IB-IVB specimens were treated with respective antioxidants for 10 min and 120 min. All specimens were then bonded with composite resin. Specimens were stored in distilled water for 24 h. SBS testing was done. Data were tabulated and subjected to statistical analysis using ANOVA and Tukey's honest significant difference test.
Results: Group VI (unbleached) showed the highest SBS followed by Group IV (10% guava seed extract).
Conclusion: Use of antioxidants effectively reversed the compromised bond strength of bleached enamel. About 10% guava seed extract application after bleaching showed best bond strength.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852925 | PMC |
http://dx.doi.org/10.4103/JCD.JCD_325_16 | DOI Listing |
Nano Lett
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
Pnictogen bond (PnB) occurring on the group-15 elements is recognized as σ- or π-hole-based interaction that has garnered attention in the fields of anion recognition and organocatalysis. Due to the polyvalent feature of pnictogens and high directionality, PnB possesses potential in the design of convergent coassembled materials with acceptors containing lone pair electrons or anions, which however is rarely explored so far. Herein, we unveil the role of antimony (Sb)-based PnB donors in producing self-assembled chiroptical materials with lone pair electron containing acceptors.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.
2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratoire Sciences et Ingénierie de la Matiére Molle, ESPCI Paris, CNRS, PSL University, Paris, France.
Stretchable elastic materials with high strength, toughness, and good ionic conductivity are highly desirable for wearable devices and stretchable batteries. Unfortunately, limited success has been reported to attain all of these properties simultaneously. Here, we report a family of ionically conductive elastomers (ICEs) without compromise between mechanical properties (high stiffness, reversible elasticity, fracture resistance) and ionic conductivity, by introducing a multiple network elastomer (MNE) architecture into a low polymer.
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Basic Sciences, Biomedical Stomatology Research Group, Faculty of Dentistry, Universidad de Antioquia U de A, Medellín, Colombia.
J Vis Exp
December 2024
School of Engineering and Materials Science, Queen Mary University of London.
Under current minimally invasive treatment regimes, minor tooth preparation and thinner biomimetic ceramic restoration are used to preserve the restored tooth's vitality, aesthetics, and function. New computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic-like material are now available. To guarantee longevity, a dental clinician must know these newly launched product's mechanical strength compared to the relatively brittle glass-matrix ceramic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!