Activity diversity structure-activity relationship of polysaccharides from lotus root varieties.

Carbohydr Polym

College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:

Published: June 2018

AI Article Synopsis

  • * Polysaccharides from the peels and nodes of lotus roots were found to be more active compared to those from the fleshy parts.
  • * The research highlighted that the composition of monosaccharides in these polysaccharides is a key factor for their health benefits, while their molecular weight does not significantly influence their activity.

Article Abstract

The in vitro activities of 39 polysaccharides from different parts of 13 lotus root varieties were evaluated and introduced into multiple linear regression analysis to explore the structure-activity relationships using their chromatographic fingerprint features as independent variables. Their 2,2-diphenyl-1-picrylhydrazyl/hydroxyl radical scavenging abilities, ferric reducing antioxidant powers and growth-inhibitory effects against HepG2 and SGC7901 cancer cells were all diverse, with the variable-coefficients ranging from 24.49% to 87.76%, while their macrophage immunostimulatory activities evaluated by nitric oxide production and tumor necrosis factor-alpha secretion showed relatively low variations. Lotus root polysaccharides (LRPs) from the peels and nodes possessed stronger activities than those from the fleshes. Their fingerprint-activity relationship models indicated that monosaccharide composition was closely related to the activities, but not molecular weight. LRPs have health-improving potentials, and their activities can be partly predicted by the quantitative fingerprint-activity relationship model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2017.11.090DOI Listing

Publication Analysis

Top Keywords

lotus root
12
root varieties
8
fingerprint-activity relationship
8
activities
5
activity diversity
4
diversity structure-activity
4
structure-activity relationship
4
relationship polysaccharides
4
polysaccharides lotus
4
varieties vitro
4

Similar Publications

NnNAC100-NnSBEII modules enhance starch content of the rhizome in Nelumbo nucifera Gaertn. Nelumbo nucifera Gaertn. is a popular aquatic vegetable and traditional Chinese medicine whose quality and taste are mainly determined by the starch.

View Article and Find Full Text PDF

This study aimed to investigate the potential of condensed tannins isolated from Cercis chinensis Bunge leaves as natural preservatives for fruits and vegetables. The research demonstrated that C. chinensis leaves condensed tannins (CLCT) significantly delay the browning process and reduce nutritional loss in fresh-cut lotus roots.

View Article and Find Full Text PDF

Two symbiotic processes, nodulation and arbuscular mycorrhiza, are primarily controlled by the plant's need for nitrogen (N) and phosphorus (P), respectively. Autoregulation of nodulation (AON) and autoregulation of mycorrhizal symbiosis (AOM) both negatively regulate their respective processes and share multiple components-plants that make too many nodules usually have higher arbuscular mycorrhiza (AM) fungal root colonization. The protein TML (TOO MUCH LOVE) was shown to function in roots to maintain susceptibly to rhizobial infection under low N conditions and control nodule number through AON in .

View Article and Find Full Text PDF

Background: With the rapid expansion of transcatheter aortic valve replacement (TAVR), TAVR valve explantation is also increasing. Nevertheless, previous reports on Lotus Edge valve explantation are limited to only two reports, none of which include intraoperative videos. Therefore, we report the case of an older adult who underwent a 2-year-old Lotus Edge valve explantation, after developing prosthetic valve endocarditis (PVE) and aortic annular abscess, with a strong indication for a TAVR explantation and surgical aortic valve replacement (AVR).

View Article and Find Full Text PDF

Type-B response regulator RRB12 regulates nodule formation in Lotus japonicus.

BMC Biol

December 2024

State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.

Background: The mutualistic beneficial relationship between legume plants and rhizobia enables the growth of plants in nitrogen-limiting conditions. Rhizobia infect legumes through root hairs and trigger nodule organogenesis in the cortex. The plant hormone cytokinin plays a pivotal role in regulating both rhizobial infection and the initiation of nodule development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!