New cellulose crystallinity estimation method that differentiates between organized and crystalline phases.

Carbohydr Polym

Fiber and Chemical Sciences Research, USDA FS, Forest Products Laboratory, 1 Gifford Pinchot Drive, Madison, WI, 53726-2398, United States.

Published: June 2018

A new method is proposed for estimation of cellulose crystallinity (CrI) based on 93 cm Raman band in spectra of cellulose I materials. In this method (93-Raman), CrI was determined based on regression that was developed using the ratios of peak-heights of the 93 and 1096 cm Raman bands (I/I). For calibration purposes, a set of eight samples, all derived from cotton microcrystalline cellulose Whatman CC31 were selected. When the peak intensity ratios (I/I) were plotted against the calculated CrIs of the calibration set samples, the plot showed an excellent linear correlation (R = 0.9888). The 93-Raman method was used to estimate crystallinities of a number of cellulose materials including poplar wood samples that were hydrothermally treated at various temperatures. The wood 93-Raman CrI data showed that the method is able to differentiate between organized and crystalline phases of cellulose, a capability lacking in many other CrI estimation methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.03.003DOI Listing

Publication Analysis

Top Keywords

cellulose crystallinity
8
organized crystalline
8
crystalline phases
8
cellulose materials
8
93-raman cri
8
set samples
8
cellulose
6
method
5
crystallinity estimation
4
estimation method
4

Similar Publications

Characteristics of naturally woven Waru bark fiber for eco-friendly composite reinforcement.

Int J Biol Macromol

January 2025

Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

The aim of this study was to investigate the potential of Waru bark fiber (WBF) as a reinforcement material for composite. To achieve this aim, WBF was extracted using a conventional process, ensuring purity, and then characterized for physical, mechanical, chemical, and thermal properties. Microstructure analysis was performed using Scanning Electron Microscope (SEM) to show uniform and exceptional fiber sheets with naturally woven fiber shapes.

View Article and Find Full Text PDF

Extraction of cellulose nanocrystals from date seeds using transition metal complex-assisted hydrochloric acid hydrolysis.

Int J Biol Macromol

January 2025

Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:

In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.

View Article and Find Full Text PDF

Enhanced Cellobiose Production from Cellulose by CaCl-Phosphoric Acid Pretreatment for the Efficient Preparation of Astragalin in Recombinant .

J Agric Food Chem

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

Cellulose, as the most abundant and cheap renewable resource in nature, is of great importance for its utilization. An enzymatic cellulose solution, mainly containing cellobiose and glucose, was utilized to produce astragalin instead of cellobiose in the recombinant strains. However, the crystalline structure of cellulose affects the production of cellobiose, resulting in a low astragalin yield.

View Article and Find Full Text PDF

Ultrasound, pulsed electric fields, and high-voltage electrical discharges assisted extraction of cellulose and lignin from walnut shells.

Int J Biol Macromol

December 2024

Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:

Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!