A new method is proposed for estimation of cellulose crystallinity (CrI) based on 93 cm Raman band in spectra of cellulose I materials. In this method (93-Raman), CrI was determined based on regression that was developed using the ratios of peak-heights of the 93 and 1096 cm Raman bands (I/I). For calibration purposes, a set of eight samples, all derived from cotton microcrystalline cellulose Whatman CC31 were selected. When the peak intensity ratios (I/I) were plotted against the calculated CrIs of the calibration set samples, the plot showed an excellent linear correlation (R = 0.9888). The 93-Raman method was used to estimate crystallinities of a number of cellulose materials including poplar wood samples that were hydrothermally treated at various temperatures. The wood 93-Raman CrI data showed that the method is able to differentiate between organized and crystalline phases of cellulose, a capability lacking in many other CrI estimation methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.03.003 | DOI Listing |
Int J Biol Macromol
January 2025
Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
The aim of this study was to investigate the potential of Waru bark fiber (WBF) as a reinforcement material for composite. To achieve this aim, WBF was extracted using a conventional process, ensuring purity, and then characterized for physical, mechanical, chemical, and thermal properties. Microstructure analysis was performed using Scanning Electron Microscope (SEM) to show uniform and exceptional fiber sheets with naturally woven fiber shapes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates. Electronic address:
In this study, the role of a transition metal complex in improving hydrolysis efficiency during nanocellulose production was analysed. Cellulose nanocrystals (CNCs) were extracted from date seeds by incorporating a copper metal complex during HCl hydrolysis. In contrast to traditional HCl hydrolysis at moderate conditions, which yielded only microcrystalline cellulose (MCC), this approach resulted in the extraction of CNCs with a 10 % improved yield compared to MCC.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
Cellulose, as the most abundant and cheap renewable resource in nature, is of great importance for its utilization. An enzymatic cellulose solution, mainly containing cellobiose and glucose, was utilized to produce astragalin instead of cellobiose in the recombinant strains. However, the crystalline structure of cellulose affects the production of cellobiose, resulting in a low astragalin yield.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:
Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.
View Article and Find Full Text PDFSci Rep
December 2024
School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!