This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2018.03.026 | DOI Listing |
Front Netw Physiol
January 2025
Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany.
All cells in the human body, including cancer cells, possess specific electrical properties crucial for their functions. These properties are notably different between normal and cancerous cells. Cancer cells are characterized by autonomous oscillations and damped electromagnetic field (EMF) activation.
View Article and Find Full Text PDFChaos
January 2025
Department of Control Theory, Scientific and Educational Mathematical Center "Mathematics of Future Technologies", Nizhny Novgorod State University, Gagarin Av. 23, Nizhny Novgorod 603022, Russia.
We consider the effect of the emergence of chimera states in a system of coexisting stationary and flying-through in potential particles with an internal degree of freedom determined by the phase. All particles tend to an equilibrium state with a small number of potential wells, which leads to the emergence of a stationary chimera. An increase in the number of potential wells leads to the emergence of particles flying-through along the medium, the phases of which form a moving chimera.
View Article and Find Full Text PDFChaos
January 2025
Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary.
The dynamics of electric power systems are widely studied through the phase synchronization of oscillators, typically with the use of the Kuramoto equation. While there are numerous well-known order parameters to characterize these dynamics, shortcoming of these metrics are also recognized. To capture all transitions from phase disordered states over phase locking to fully synchronized systems, new metrics were proposed and demonstrated on homogeneous models.
View Article and Find Full Text PDFChaos
January 2025
Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization.
View Article and Find Full Text PDFChaos
January 2025
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina.
The diffusion of information plays a crucial role in a society, affecting its economy and the well-being of the population. Characterizing the diffusion process is challenging because it is highly non-stationary and varies with the media type. To understand the spreading of newspaper news in Argentina, we collected data from more than 27 000 articles published in six main provinces during 4 months.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!