Biotransformation using halotolerant yeast in seawater: a sustainable strategy to produce R-(-)-phenylacetylcarbinol.

Appl Microbiol Biotechnol

Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de València (UVEG), Dr. Moliner 50, E-46100, Burjassot, València, Spain.

Published: June 2018

Acyloin condensation between benzaldehyde and decarboxylated pyruvate results in the production of R-(-)-phenylacetylcarbinol, a chiral precursor of the drug ephedrine. Huge research efforts have been made to improve the conditions of this reaction and to avoid the generation of by-products. Recently, we reported the advantages of using whole cells of the yeast Debaryomyces etchellsii as biocatalysts for this purpose. In this work, a new strategy, which fulfills green chemistry principles, is proposed and is based on using seawater as a gentle solvent. We demonstrate that, under these conditions, several improvements can be made compared to employing freshwater: (1) the conversion of the starting material in (R)-PAC is higher and with a minimum production of by-products; (2) it is possible to increase at least twofold the benzaldehyde load in the reaction medium; (3) cells can maintain their activity after several recycling rounds, which makes (R)-PAC production an easy and economical process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-018-8945-1DOI Listing

Publication Analysis

Top Keywords

biotransformation halotolerant
4
halotolerant yeast
4
yeast seawater
4
seawater sustainable
4
sustainable strategy
4
strategy produce
4
produce r---phenylacetylcarbinol
4
r---phenylacetylcarbinol acyloin
4
acyloin condensation
4
condensation benzaldehyde
4

Similar Publications

Lignocellulolytic enzymes isolation from mangrove-derived organisms has many industrial advantages due to their efficiency in dealing with extreme and challenging conditions, such as high temperatures and salt concentrations. This study aimed to isolate fungal enzyme producers from mangrove soil in Thailand to produce lignocellulolytic enzymes (carboxymethyl cellulase: CMCase, xylanase, and laccase) and to characterize these enzymes to support industrial applications. Forty-eight fungi were isolated from the mangrove samples, and their enzyme-producing capabilities were assessed using primary and secondary screening methods.

View Article and Find Full Text PDF

Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.

Appl Microbiol Biotechnol

December 2024

National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.

The halotolerant yeast Scheffersomyces spartinae, commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S.

View Article and Find Full Text PDF

The sustainable treatment of petroleum-derived produced water (PW), a significant byproduct of oil and gas extraction, presents a persistent problem due to the presence of organic pollutants. This study examines the potential of the microalga Chlorella sorokiniana (C. sorokiniana) for the bioremediation of dissolved organic pollutants in PW.

View Article and Find Full Text PDF
Article Synopsis
  • Benzene, toluene, ethylbenzene, and xylene (BTEX) are hazardous compounds found in marine waters, primarily due to oil spills and industrial effluents, necessitating effective bioremediation methods in saline environments.
  • The study evaluated the halotolerance of Aspergillus niger by gradually increasing salinity to 30‰, revealing optimal growth at 25‰ with significant biomass production.
  • Batch reactor experiments showed that the adapted Aspergillus niger could efficiently degrade BTEX compounds, achieving nearly complete removal in 7 days, with benzene being the most effectively adsorbed compound on the fungal biomass.
View Article and Find Full Text PDF

Oleaginous Yeast Biology Elucidated With Comparative Transcriptomics.

Biotechnol Bioeng

December 2024

Department of Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.

Extremophilic yeasts have favorable metabolic and tolerance traits for biomanufacturing- like lipid biosynthesis, flavinogenesis, and halotolerance - yet the connection between these favorable phenotypes and strain genotype is not well understood. To this end, this study compares the phenotypes and gene expression patterns of biotechnologically relevant yeasts Yarrowia lipolytica, Debaryomyces hansenii, and Debaryomyces subglobosus grown under nitrogen starvation, iron starvation, and salt stress. To analyze the large data set across species and conditions, two approaches were used: a "network-first" approach where a generalized metabolic network serves as a scaffold for mapping genes and a "cluster-first" approach where unsupervised machine learning co-expression analysis clusters genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!