Background And Objective: In a phase II clinical trial, carboplatin (CBDCA) displayed the response rate of 19% equivalent to dacarbazine in the treatment of malignant melanoma. However, besides desirable therapeutic profile, intravenous (i.v) administration of CBDCA delivers a subtherapeutic concentration at the target site. This entails administration of CBDCA through an alternate route by using nanovectors to achieve therapeutic efficacy in the treatment of melanoma.

Methods And Results: Carboplatin loaded poly(ε-caprolactone) nanoparticles (CBDCA-PCL-NPs) were formulated and amalgamated with chitosan-β-glycerophosphate gel (CBDCA-PCL-NPs-Gel) for intratumoral (i.t) administration. The mean particle size and zeta-potential of CBDCA-PCL-NPs were determined to be 54.5 ± 6.3-nm and -8.1 ± 0.9-mV, in addition to spherical shape of the nanoformulation. FT-IR spectroscopy denied any issue of chemical incompatibility between drug and polymer. XRD pattern indicated the amorphous lattice of CBDCA-PCL-NPs. The drug loading capacity of CBDCA-PCL-NPs-Gel was estimated to be 152 mg/1 ml. CBDCA-PCL-NPs-Gel demonstrated prolonged drug release up to 48 h. Furthermore, CBDCA-PCL-NPs-Gel displayed the IC of 80.3-μM significantly (P < 0.05) lower than 162.8-μM of CBDCA-PCL-NPs and 248.5-μM of CBDCA solution in B16F1, melanoma cancer cells. CBDCA-PCL-NPs-Gel verified 80.2% of apoptosis significantly (P < 0.01) higher than 57.6% of CBDCA-PCL-NPs and 43.4% of CBDCA solution. Continuation to this, CBDCA-PCL-NPs-Gel significantly (P < 0.01) suppressed the tumor volume to 95.5 ± 8.4-mm as compared to 178.9 ± 10.2-mm of CBDCA solution injected i.t. and 210.6 ± 17.1-mm displayed by CBDCA solution injected i.v. vis-à-vis 815.4 ± 17.1-mm tumor volume of B16F1 tumor bearing C57BL6J mice.

Conclusion: The promising preclinical results of CBDCA-PCL-NPs-Gel warrant further investigations under a set of stringent parameters for the treatment of melanoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.03.009DOI Listing

Publication Analysis

Top Keywords

intratumoral administration
8
administration cbdca
8
administration carboplatin
4
carboplatin bearing
4
bearing poly
4
poly ε-caprolactone
4
ε-caprolactone nanoparticles
4
nanoparticles amalgamated
4
amalgamated situ
4
situ gel
4

Similar Publications

Neoadjuvant immunotherapy represents a pioneering approach in the preoperative treatment of cancer, offering novel avenues for tumor reduction and improved patient outcomes by modulating the immune response. This study investigated neoadjuvant immunotherapy using intratumoral administration of mannan-BAM, Toll-like receptor ligands, and antiCD40 antibody (MBTA therapy) followed by surgery in murine models of mouse tumor tissue (MTT) pheochromocytoma, B16-F10 melanoma, and 4T1 and E0771.lmb mammary carcinomas.

View Article and Find Full Text PDF

Introduction: Adaptive ChemoTherapy for Ovarian cancer (ACTOv) is a phase II, multicentre, randomised controlled trial, evaluating an adaptive therapy (AT) regimen with carboplatin in women with relapsed, platinum-sensitive high-grade serous or high-grade endometrioid cancer of the ovary, fallopian tube and peritoneum whose disease has progressed at least 6 months after day 1 of the last cycle of platinum-based chemotherapy. AT is a novel, evolutionarily informed approach to cancer treatment, which aims to exploit intratumoral competition between drug-sensitive and drug-resistant tumour subpopulations by modulating drug dose according to a patient's own response to the last round of treatment. ACTOv is the first clinical trial of AT in this disease setting.

View Article and Find Full Text PDF

Despite the promising results in cancer treatment, standard monotherapy remains insufficient for a wide range of oncological diseases. Combined therapy can significantly improve therapeutic outcomes compared to single-agent treatments. However, identifying the optimal treatment regimen for combined therapy can be a challenging task.

View Article and Find Full Text PDF

Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.

View Article and Find Full Text PDF

Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!