Excessive negative energy balance (EB) has been associated with decreased reproductive performance and increased risk of lameness and metabolic diseases. On-farm, automated EB estimates for individual cows would enable dairy farmers to detect excessive negative EB early and act to minimize its extent and duration by altering feeding. Previously, we have shown that EB can be estimated from frequent measurements of body weight (BW) and body condition score (BCS) changes, referred to as EB. In this study, we investigated the robustness and sensitivity of the EB method to assess its genericity and on-farm applicability. We used 5 data sets with BW of lactating cows (name of data set in parenthesis): 65 Holstein cows in a French feeding trial (INRA); 6 Holstein cows in a British feeding trial (Friggens); 31 Holstein cows and 17 Jersey cows in a Danish feeding trial (DCRC); 140 Holstein cows in a British feeding trial (Scotland's Rural College, SRUC); and 1,592 Holstein cows on 9 Danish farms with milking robots (automatic milking system). We used the INRA and Friggens data sets to develop a dynamic formula to correct BW for increasing residual gut-fill (RGF) during early lactation. With the DCRC data, we tested the effect of smoothing parameters and weighing frequency on EB. Also, 2 robustness tests were performed using the SRUC data to test the effect of diet change on BW and the automatic milking system data to test the effect of farm on BW variation. Finally, we combined the results into a blueprint describing different ways to calculate EB depending on the purpose and on the availability of BCS. The dynamic RGF adjustment resulted in a lower empty BW during early lactation than that obtained with the previously used constant RGF. The double-exponential smoothing method used to correct for meal-related gut-fill was robust to choice of smoothing parameters. Cows should be weighed at least once every 4 d during early lactation to capture the duration of negative EB. Our EB method proved robust to diet changes. Finally, although cow BW varied significantly between farms, the quantile regression smoothing of BW did not bias the estimation of weight differences between herds. In conclusion, these results validate the applicability of the EB method to estimate EB across a range of farm conditions, and we provided a blueprint that enables the estimation of EB for individual cows on-farm using only frequent BW, in combination with BCS when available.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2017-14290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!