Accurate interpolation of 3D fields in charged particle optics.

Ultramicroscopy

CEITEC - Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 612 00, Czech Republic; Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno 616 69, Czech Republic.

Published: June 2018

AI Article Synopsis

  • Standard 3D interpolation polynomials often result in numerical errors and lack sufficient node points for 3D solutions, prompting the introduction of a more reliable method for interpolating electromagnetic fields.
  • This new method integrates Fourier analysis and Gaussian wavelet interpolation, offering precise and smooth results for multipole field functions and their derivatives, typically accurate up to the 5th derivative.
  • The method enhances applications like particle tracing and assessing optical properties, and it is demonstrated through examples involving various magnetic and electrostatic lens configurations.

Article Abstract

Standard 3D interpolation polynomials often suffer from numerical errors of the calculated field and lack of node points in the 3D solution. We introduce a novel method for accurate and smooth interpolation of arbitrary electromagnetic fields in the vicinity of the optical axis valid up to 90% of the bore radius. Our method combines Fourier analysis and Gaussian wavelet interpolation and provides the axial multipole field functions and their derivatives analytically. The results are accurate and noiseless, usually up to the 5th derivative. This is very advantageous for further applications, such as accurate particle tracing, and evaluation of aberration coefficients and other optical properties. The proposed method also enables studying the strength and orientation of all multipole field components. To illustrate the capabilities of the proposed algorithm, we present three examples: a magnetic lens with a hole in the polepiece, a saturated magnetic lens with an elliptic polepiece, and an electrostatic 8-electrode multipole.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2018.03.023DOI Listing

Publication Analysis

Top Keywords

multipole field
8
magnetic lens
8
accurate
4
accurate interpolation
4
interpolation fields
4
fields charged
4
charged particle
4
particle optics
4
optics standard
4
standard interpolation
4

Similar Publications

Refinement of Atomic Polarizabilities for a Polarizable Gaussian Multipole Force Field with Simultaneous Considerations of Both Molecular Polarizability Tensors and In-Solution Electrostatic Potentials.

J Chem Inf Model

January 2025

Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Atomic polarizabilities are considered to be fundamental parameters in polarizable molecular mechanical force fields that play pivotal roles in determining model transferability across different electrostatic environments. In an earlier work, the atomic polarizabilities were obtained by fitting them to the B3LYP/aug-cc-pvtz molecular polarizability tensors of mainly small molecules. Taking advantage of the recent PCMRESPPOL method, we refine the atomic polarizabilities for condensed-phase simulations using a polarizable Gaussian Multipole (pGM) force field.

View Article and Find Full Text PDF

Accelerating Fock Build via Hybrid Analytical-Numerical Integration.

J Phys Chem A

January 2025

Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, P. R. China.

A hybrid analytical-numerical integration scheme is introduced to accelerate the Fock build in self-consistent field (SCF) and time-dependent density functional theory (TDDFT) calculations. To evaluate the Coulomb matrix [], the density matrix is first decomposed into two parts, the superposition of atomic density matrices and the rest = -. While [] is evaluated analytically, [] is evaluated fully numerically [with the multipole expansion of the Coulomb potential (MECP)] during the SCF iterations.

View Article and Find Full Text PDF

Completely Multipolar Model for Many-Body Water-Ion and Ion-Ion Interactions.

J Phys Chem Lett

January 2025

Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.

This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.

View Article and Find Full Text PDF

Minimal Basis Iterative Stockholder Decomposition with Multipole Constraints.

J Chem Theory Comput

January 2025

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus, Denmark.

The minimal basis iterative Stockholder (MBIS) decomposition of molecular electron densities into atomic quantities is an attractive approach for deriving electrostatic parameters in force fields. The MBIS-derived atomic charges, however, in general tend to overestimate the molecular dipole and quadrupole moments by ∼10%. We show that it is possible to derive a constrained MBIS model where the atomic charges or a combination of atomic charges and dipoles exactly reproduce the molecular dipole and quadrupole moments for molecules.

View Article and Find Full Text PDF

Performance Tuning of Polarizable Gaussian Multipole Model in Molecular Dynamics Simulations.

J Chem Theory Comput

January 2025

Chemical and Materials Physics Graduate Program, Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, Irvine, California 92697, United States.

Molecular dynamics (MD) simulations are essential for understanding molecular phenomena at the atomic level, with their accuracy largely dependent on both the employed force field and sampling. Polarizable force fields, which incorporate atomic polarization effects, represent a significant advancement in simulation technology. The polarizable Gaussian multipole (pGM) model has been noted for its accurate reproduction of ab initio electrostatic interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!