Metallothioneins (MTs) are low molecular weight, sulfhydryl-containing, cysteine-rich, metal-binding proteins. Eukaryotes have multiple metallothionein genes; however, there is dearth of reports on prokaryotic metallothioneins. Bacterial MTs with SmtA from Synechococcus PCC 7942 as prototype have been studied in the context of cadmium detoxification. In this study, a smtA related ORF, namely nmtA, was identified in the heterocystous, nitrogen-fixing cyanobacterium, Anabaena PCC 7120. A recombinant N-terminal histidine-tagged Anabaena NmtA protein was overexpressed in Escherichia coli and purified. The protein was identified by peptide mass fingerprinting using MALDI-TOF Mass Spectrometry as putative metallothionein of Anabaena PCC 7120 with a calculated mass of ∼6.1 kDa. While the native metallated NmtA exhibited resistance against proteolysis, metal free apo-NmtA resulting from acid and dithiothreitol (DTT) treatment could be digested by proteinase K revealing a metal dependent proteolytic protection of NmtA. Expression of nmtA in Anabaena PCC 7120 was induced evidently by cadmium, zinc and copper but not by uranium or hydrogen peroxide. Recombinant Anabaena PCC 7120 overexpressing NmtA protein revealed superior cadmium tolerance but showed limited influence against oxidative stress tolerance as compared with the strain carrying vector alone. In contrast, a mutant of Synechococcus PCC 7942 deficient in MT locus was found to be highly susceptible to HO indicating a likely involvement of cyanobacterial MT in protection against oxidative damage. Overall, the study improved our understanding of metal tolerance mechanisms in Anabaena PCC 7120 by demonstrating a key role of NmtA in cadmium tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2018.03.035 | DOI Listing |
Nucleic Acids Res
December 2024
Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
RNA-binding proteins (RBPs) are central components of gene regulatory networks. The differentiation of heterocysts in filamentous cyanobacteria is an example of cell differentiation in prokaryotes. Although multiple non-coding transcripts are involved in this process, no RBPs have been implicated thus far.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120.
View Article and Find Full Text PDFMol Microbiol
December 2024
Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.
Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N fixation.
View Article and Find Full Text PDFMicrobiol Res
January 2025
State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address:
PacR (All3953) has previously been identified as a global transcriptional regulator of carbon assimilation in cyanobacteria. In the facultative diazotrophic and filamentous cyanobacterium Anabaena PCC 7120 (Anabaena), inactivation of pacR has been shown to affect cell growth under various conditions. Nitrogen fixation in Anabaena occurs in heterocysts, cells differentiated semiregularly along the filaments following deprivation of combined nitrogen such as nitrate or ammonium.
View Article and Find Full Text PDFSynth Syst Biotechnol
October 2024
Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
Efforts have been conducted on cyanobacterial genome editing, yet achieving genome editing in cyanophages remains challenging. Editing cyanophage genomes is crucial for understanding and manipulating their interactions with cyanobacterial hosts, offering potential solutions for controlling cyanobacterial blooms. In this study, we developed a streamlined CRISPR-Cas12a-based method for efficient cyanophage genome editing and then applied this method to the cyanophages A-1(L) and A-4(L) of sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!