A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field. Such an approach allows one to achieve much better performance for APSOC; consequently, the efficiency of magnetization-to-singlet conversion is greatly improved as compared to simple model RF-ramps, e.g., linear ramps. We also demonstrate that the optimization method is reasonably robust to possible inaccuracies in determining NMR parameters of the spin system under study and also in setting the RF-field parameters. The present approach can be exploited in other NMR and EPR applications using adiabatic switching of spin Hamiltonians.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2018.03.005DOI Listing

Publication Analysis

Top Keywords

performance apsoc
8
exploited nmr
8
magnetization-to-singlet conversion
8
optimal control
4
control methods
4
methods constraints
4
constraints generate
4
generate singlet
4
singlet states
4
nmr
4

Similar Publications

A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field.

View Article and Find Full Text PDF

We provide a detailed evaluation of nuclear magnetic resonance (NMR) parameters of the - and -isomers of azobenzene (AB). For determining the NMR parameters, such as proton-proton and proton-nitrogen -couplings and chemical shifts, we compared NMR spectra of three different isotopomers of AB: the doubly N labeled azobenzene, N,N'-AB, and two partially deuterated AB isotopomers with a single N atom. For the total lineshape analysis of NMR spectra, we used the recently developed ANATOLIA software package.

View Article and Find Full Text PDF

Automated Software Acceleration in Programmable Logic for an Efficient NFFT Algorithm Implementation: A Case Study.

Sensors (Basel)

March 2017

Department of Industrial Engineering, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Spain.

Non-equispaced Fast Fourier transform (NFFT) is a very important algorithm in several technological and scientific areas such as synthetic aperture radar, computational photography, medical imaging, telecommunications, seismic analysis and so on. However, its computation complexity is high. In this paper, we describe an efficient NFFT implementation with a hardware coprocessor using an All-Programmable System-on-Chip (APSoC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!