Euphorbiaceae represents flowering plants family of tropical and sub-tropical region rich in secondary metabolites of economic importance. To understand and assess the genetic makeup among the members, this study was undertaken to characterize and compare SSR markers from publicly available ESTs and GSSs of nine selected species of the family. Mining of SSRs was performed by MISA, primer designing by Primer3, while functional annotation, gene ontology (GO) and enrichment analysis were performed by Blast2GO. A total 12,878 number of SSRs were detected from 101,701 number of EST sequences. SSR density ranged from 1 SSR/3.22 kb to 1 SSR/15.65 kb. A total of 1873 primer pairs were designed for the annotated SSR-Contigs. About 77.07% SSR-ESTs could be assigned a significant match to the protein database. 3037 unique SSR-FDM were assigned and IPR003657 (WRKY Domain) was found to be the most dominant FDM among the members. 1810 unique GO terms obtained were further subjected to enrichment analysis to obtain 513 statistically significant GO terms mapped to the SSR containing ESTs. Most frequent enriched GO terms were, GO:0003824 for molecular function, GO:0006350 for biological process and GO:0005886 for cellular component, justifying the richness of defensive secondary metabolites and phytomedicine within the family. The results from this study provides tangible insight to genetic make-up and distribution of SSRs. Functional annotation corresponded many genes of unknown functions which may be considered as novel genes or genes responsible for stress specific secondary metabolites. Further studies are required to understand stress specific genes accountable for leveraging the synthesis of secondary metabolites.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-018-4181-0DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
16
functional annotation
8
enrichment analysis
8
stress specific
8
mining comparative
4
comparative survey
4
survey est-ssr
4
est-ssr markers
4
markers members
4
members euphorbiaceae
4

Similar Publications

Sorbitol is an important primary metabolite that serves as both a carbon source and signal to pathogens. The leaf diseases caused by Alternata alternata are particularly serious in crabapple (Malus micromalus). Here, we found that sorbitol can enhance the resistance of crabapple to A.

View Article and Find Full Text PDF

Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).

Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.

View Article and Find Full Text PDF

Wild tomato species exhibit natural insect resistance, yet the specific secondary metabolites and underlying mechanisms governing the resistance remain unclear. Moreover, defense expression dynamically adapts to insect herbivory, causing significant metabolic changes and species-specific secondary metabolite accumulation. The present study aims to identify the resistance-related metabolites in wild tomato accessions that influence the defense mechanism against whitefly (Bemisia tabaci Asia II 7) and leafminer (Phthorimaea absoluta).

View Article and Find Full Text PDF

Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.

View Article and Find Full Text PDF

Extraction, Isolation, and Structural Elucidation of Acylated Triterpene Saponins from Asteraceae Family.

Methods Mol Biol

January 2025

College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.

Saponins represent specialized (secondary) metabolites primarily sourced from plants, typically characterized by an aglycone component of triterpenoids or steroids, often referred to as sapogenin, coupled with sugar moieties. Their structural intricacy and diversity, along with their manifold pharmacological properties, have garnered significant interest among researchers. Notwithstanding this interest, the study of saponins has been encumbered by challenges in their isolation, purification, and structural characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!