Ambient gamma dose, radon, and rainfall have been monitored in southern Bucharest, Romania, from 2010 to 2016. The seasonal cycle of background ambient gamma dose peaked between July and October (100-105 nSv h), with minimum values in February (75-80 nSv h), the time of maximum snow cover. Based on 10 m a.g.l. radon concentrations, the ambient gamma dose increased by around 1 nSv h for every 5 Bq m increase in radon. Radon variability attributable to diurnal changes in atmospheric mixing contributed less than 15 nSv h to the overall variability in ambient gamma dose, a factor of 4 more than synoptic timescale changes in air mass fetch. By contrast, precipitation-related enhancements of the ambient gamma dose were 15-80 nSv h. To facilitate routine analysis, and account in part for occasional equipment failure, an automated method for identifying precipitation spikes in the ambient gamma dose was developed. Lastly, a simple model for predicting rainfall-related enhancement of the ambient gamma dose is tested against rainfall observations from events of contrasting duration and intensity. Results are also compared with those from previously published models of simple and complex formulation. Generally, the model performed very well. When simulations underestimated observations the absolute difference was typically less than the natural variability in ambient gamma dose arising from atmospheric mixing influences. Consequently, combined use of the automated event detection method and the simple model of this study could enable the ambient gamma dose "attention limit" (which indicates a potential radiological emergency) to be reduced from 200 to 400% above background to 25-50%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2018.03.012 | DOI Listing |
Inorg Chem
January 2025
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.
View Article and Find Full Text PDFEnviron Pollut
January 2025
SKL-ESPC & SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing, China. Electronic address:
The biological pathways connecting ambient fine particulate matter (PM)-induced initial adverse effects to the development of atherosclerotic cardiovascular diseases are not fully understood. We hypothesize that lysoglycerophospholipids (LysoGPLs) are pivotal mediators of atherosclerosis induced by exposure to PM. This study investigated the changes of LysoGPLs in response to PM exposure and the mediation role of LysoGPLs in the pro-atherosclerotic effects of PM exposure.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China; Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi, 030032, China; College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China. Electronic address:
Background: Laser-induced breakdown spectroscopy (LIBS) has long been regarded as the future superstar for chemical analysis. However, hindered by the fact that the signal source of LIBS is a spatially and temporally unstable plasma that interacts dramatically with ambient gases, LIBS has always suffered from poor signal quality, especially low signal repeatability. Although ambient gases act as one of the most direct and critical factors affecting LIBS signals, a clear understanding on how ambient gas properties impact LIBS signals is still lacking to act as guideline for the signal quality improvement.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Honcho, Hirosaki, Aomori 036-8564, Japan.
The radiation dose reduction factor represents a building's shielding capability against radiation in scenarios of potential nuclear accidents. Notably, the radiation dose reduction for school buildings and gymnasiums have not yet been determined, even though the building types are planned to be used as evaluation shelters in Japan. This study evaluated dose reduction factors in relation to the accident at the Fukushima Daiichi Nuclear Power Plant (FDNPP).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2024
Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Chinese Academy of Sciences), Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
Organolithium reagents, known for their low cost, ready availability, and high reactivity, allow fast cross-coupling under ambient conditions. However, their direct cross-coupling with fluoroalkyl electrophiles remains a formidable challenge due to the easy formation of thermo-unstable fluoroalkyl lithium species during the reaction, which are prone to decomposition via rapid α/β-fluoride elimination. Here, we exploit heteroatom-stabilized allylic anions to harness the exceptional reactivity of organolithium reagents, enabling the compatibility of difluoroalkyl halides and facilitating versatile and precise fluorine functionality introduction under mild conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!