In this study, we demonstrated that cationic liposomes with incorporated stearylamine (SA) inhibit viral infectivity without preloaded active pharmaceutical ingredients. Specifically, we correlated physiochemical properties of liposomes, such as zeta potentials and particle sizes, with virus infectivity using the BacMamâ„¢ reagent, which is based on recombinant baculovirus (BV). Compared with neutral or negatively-charged liposomes, SA liposomes suppressed BV infectivity in several mammalian cell lines, including A549 cells. SA liposomes inhibited BV infection over 80% by optimizing the liposomal concentration and exposure time with cells. Moreover, these antiviral SA liposomes were not cytotoxic, and reducing the embedded cholesterol contents intensified the antiviral effects and simultaneously increased the binding of SA liposomes to the cell membranes. These data indicate that binding of SA liposomes to cell membranes may block virus entry. Finally, we also demonstrated the antiviral effects of SA liposomes on herpes simplex virus type 1 in A549 cells, and showed comparable efficacy to that of the antiviral drug acyclovir.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2018.04.001DOI Listing

Publication Analysis

Top Keywords

liposomes
10
cationic liposomes
8
a549 cells
8
antiviral effects
8
binding liposomes
8
liposomes cell
8
cell membranes
8
effects cationic
4
liposomes stearylamine
4
virus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!