Living animal cells are strongly influenced by the mechanical properties of their environment. To model physiological conditions ultrasoft cell culture substrates, in some instances with elasticity (Young's modulus) of only 1 kPa, are mandatory. Due to their long shelf life PDMS-based elastomers are a popular choice. However, uncertainty about additives in commercial formulations and difficulties to reach very soft materials limit their use. Here, we produced silicone elastomers from few, chemically defined and commercially available substances. Elastomers exhibited elasticities in the range from 1 kPa to 55 kPa. In detail, a high molecular weight (155 kg/mol), vinyl-terminated linear silicone was crosslinked with a multifunctional (f = 51) crosslinker (a copolymer of dimethyl siloxane and hydrosilane) by a platinum catalyst. The following different strategies towards ultrasoft materials were explored: sparse crosslinking, swelling with inert silicone polymers, and, finally, deliberate introduction of dangling ends into the network (inhibition). Rheological experiments with very low frequencies led to precise viscoelastic characterizations. All strategies enabled tuning of stiffness with the lowest stiffness of ~1 kPa reached by inhibition. This system was also most practical to use. Biocompatibility of materials was tested using primary cortical neurons from rats. Even after several days of cultivation no adverse effects were found.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889068 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195180 | PLOS |
Sci Rep
January 2025
Chemical Engineering and Pilot Plant Department, Engineering & Renewable Energy Research Institute, National Research Centre (NRC), Giza, 12622, Egypt.
Humans have contaminated water supplies with harmful compounds, including different heavy metals. Heavy metals can interfere with human and animal vital organs and metabolic processes. They are also persistent and bioaccumulative.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
There are several studies that announce the inhibitory behavior of this sort of substance to strengthen the shield of metals, which is one of the positive benefits of green inhibitors. In the current investigation, Araucaria heterophylla studied as a green corrosion inhibitor to avert the mild steel during the acidic cleaning. The examination of this plant's ability to control corrosion at different concentrations in the acidic solution used certain expert measures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shandong university, School of Chemistry and Chemical Engineering, No 27, Shandananlu,, 250100, Jinan, CHINA.
The regulation of artificial interphase for advanced Zn anode is an effective solution to achieve superior electrochemical performance for aqueous batteries. However, the deployment of atomically precise architectures and ligand engineering to achieve functionalization-oriented regulatory screening is lacking, which is hindered by higher requirements for synthetic chemistry and structural chemistry. Herein, we have first performed ligand engineering which selected zinc ion trapping ligands (-CH3) based on the coordination effect, and zinc substrate binding ligands (-N=N-xC6H5) based on the electrostatic interaction.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, China University of Petroleum, Beijing 102249, PR China.
The purification efficiency of autoexhaust carbon strongly depends on the heterogeneous interface structure between active metal and oxide, which can modulate the local electronic structure of defect sites to promote the activation of reactant molecules. Herein, the high-dispersion CuO clusters supported on the well-defined CeO nanorods were prepared using the complex deposition slow method. The formation of heteroatomic Cu-O-Ce interfacial structural units as active sites can capture electrons to achieve activation of the NO and O molecules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA.
The inherent heterogeneity, poor compatibility with polymers, and dark color of lignin limit its application in composites. In this study, original lignin (OL) was fractionated sequentially using four green organic solvents to obtain lignin fractions with different chemical structures. These well-defined lignin fractions were then blended with polybutylene succinate (PBS) to fabricate biocomposites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!