Compact standalone platform for neural recording with real-time spike sorting and data logging.

J Neural Eng

EEE Department, Centre for Bio-Inspired Technology, Imperial College London, South Kensington Campus, London SW7 2BT, United Kingdom.

Published: August 2018

Objective: Longitudinal observation of single unit neural activity from large numbers of cortical neurons in awake and mobile animals is often a vital step in studying neural network behaviour and towards the prospect of building effective brain-machine interfaces (BMIs). These recordings generate enormous amounts of data for transmission and storage, and typically require offline processing to tease out the behaviour of individual neurons. Our aim was to create a compact system capable of: (1) reducing the data bandwidth by circa 2 to 3 orders of magnitude (greatly improving battery lifetime and enabling low power wireless transmission in future versions); (2) producing real-time, low-latency, spike sorted data; and (3) long term untethered operation.

Approach: We have developed a headstage that operates in two phases. In the short training phase a computer is attached and classic spike sorting is performed to generate templates. In the second phase the system is untethered and performs template matching to create an event driven spike output that is logged to a micro-SD card. To enable validation the system is capable of logging the high bandwidth raw neural signal data as well as the spike sorted data.

Main Results: The system can successfully record 32 channels of raw neural signal data and/or spike sorted events for well over 24 h at a time and is robust to power dropouts during battery changes as well as SD card replacement. A 24 h initial recording in a non-human primate M1 showed consistent spike shapes with the expected changes in neural activity during awake behaviour and sleep cycles.

Significance: The presented platform allows neural activity to be unobtrusively monitored and processed in real-time in freely behaving untethered animals-revealing insights that are not attainable through scheduled recording sessions. This system achieves the lowest power per channel to date and provides a robust, low-latency, low-bandwidth and verifiable output suitable for BMIs, closed loop neuromodulation, wireless transmission and long term data logging.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/aabc23DOI Listing

Publication Analysis

Top Keywords

neural activity
12
spike sorted
12
spike sorting
8
data logging
8
system capable
8
wireless transmission
8
long term
8
raw neural
8
neural signal
8
signal data
8

Similar Publications

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

MicroRNA-204-5p Deficiency within the vmPFC Region Contributes to Neuroinflammation and Behavioral Disorders via the JAK2/STAT3 Signaling Pathway in Rats.

Adv Sci (Weinh)

January 2025

Key Laboratory of Mental Disorders, The Second Hospital of Shandong University, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China.

Major depressive disorder (MDD) is usually considered associate with immune inflammation and synaptic injury within specific brain regions. However, the molecular mechanisms underlying the neural deterioration resulting in depression remain unclear. Here, it is found that miR-204-5p is markedly downregulated in the ventromedial prefrontal cortex (vmPFC) in a chronic unpredictable mild stress (CUMS) induce rat model of depression.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion injury (CIRI) constitutes a significant etiology of exacerbated cerebral tissue damage subsequent to intravenous thrombolysis and endovascular mechanical thrombectomy in patients diagnosed with acute ischemic stroke. The treatment of CIRI has been extensively investigated through a multitude of clinical studies. Acupuncture has been demonstrated to be effective in treating CIRI.

View Article and Find Full Text PDF

Transketolase attenuates the chemotherapy sensitivity of glioma cells by modulating R-loop formation.

Cell Rep

January 2025

Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China. Electronic address:

Glioblastoma (GBM) is a highly lethal malignant brain tumor with poor survival rates, and chemoresistance poses a significant challenge to the treatment of patients with GBM. Here, we show that transketolase (TKT), a metabolic enzyme in the pentose phosphate pathway (PPP), attenuates the chemotherapy sensitivity of glioma cells in a manner independent of catalytic activity. Mechanistically, chemotherapeutic drugs can facilitate the translocation of TKT protein from the cytosol into the nucleus, where TKT physically interacts with XRN2 to regulate the resolution and removal of R-loops.

View Article and Find Full Text PDF

Diffraction imaging of cells allows rapid phenotyping by the response of intracellular molecules to coherent illumination. However, its ability to distinguish numerous types of human leukocytes remains to be investigated. Here, we show that accurate classification of three lymphocyte subtypes can be achieved with features extracted from cross-polarized diffraction image (p-DI) pairs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!