Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Influenza A viruses (IAV) can cause pandemics and are big threats to human health. Inflammation is the main pathological process in the lungs after IAV infection. We aimed to investigate whether hesperidin, a well-known anti-inflammatory compound, could be effective in improving IAV-induced lung injury.
Methods: We generated a rat model using H1N1 virus infection, and intraperitoneally injected different doses of hesperidin for 5 days. Pulmonary function was analysed. Local inflammatory state was profiled by immune cells and cytokines. Pulmonary microvascular endothelial cells were isolated from rats and used to test the effects of hesperidin in vitro.
Results: Hesperidin showed efficacy in improving H1N1-induced impairment of pulmonary function in a dose-dependent manner. Local numbers of immune cells and concentrations of cytokines were significantly limited by hesperidin. However, we found that hesperidin neither inhibited virus replication, nor rescued infected pulmonary microvascular endothelial cells. Rather, we observed that hesperidin reduced pro-inflammatory cytokine production by suppressing mitogen-activated protein kinase (MAPK) signalling pathways.
Conclusions: Hesperidin could alleviate H1N1-induced impairment of pulmonary function by inhibiting cytokine production in pulmonary microvascular endothelial cells through MAPK signalling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3851/IMP3235 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!