Objective We aimed to investigate the mechanism of paraventricular nucleus (PVN) and ventral tegmental area (VTA) circuit in the pathogenesis of visceral pain-depression with a rat model induced by neonatal and adult colorectal distension (CRD). Methods Neonate male Sprague-Dayley (SD) rats underwent CRD on postnatal days 8, 10, and 12, and when matured, were tested for adult abdominal withdrawal reflex (AWR) scores to assess visceral hypersensitivity. The forced swimming test was employed to evaluate depression-like behaviors. The rats exhibiting visceral pain-depressive behaviors underwent lidocaine injection in the VTA to explore the relationship between VTA and visceral pain. Moreover, double immunofluorescence was employed to evaluate the qualitative and quantitative expression of dopamine/ c-Fos in CRD rats. After verifying the existed fiber projection from PVN to VTA, the intra-PVN microinjection of CRH-RNAi lentivirus to inhibit corticotropin-releasing hormone (CRH) expression, behavioral changes were assessed by AWR score and FST. Thereafter, with the sacrifice of the rats, the variations of TH protein in rats were evaluated by immunofluorescence and Western blot. Results Intra-VTA microinjection of lidocaine increased the pain threshold of CRD group. After intra-VTA microinjection of green retrograde tracer, immunofluorescence photomicrographs visualized the PVN with a typical green retrograde tracer. Intra-PVN microinjection of CRH-RNAi lentivirus alleviated the visceral pain-depression behaviors and decreased the TH protein expression in the VTA. Conclusion These data demonstrated that the VTA played a functional role in chronic visceral pain and depression, and the CRH-containing neurons in hypothalamic PVN may be implicated in the onset and maintenance of the chronic visceral pain and depression via the activation of dopamine in the VTA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/01616412.2018.1460702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!