Purpose: The minimally invasive closure of the left atrial appendage is a promising alternative to anticoagulation for stroke prevention in patients suffering from atrial fibrillation. One of the challenges of this procedure is the correct positioning and the coaxial alignment of the tip of the catheter sheath to the implant landing zone.
Method: In this paper, a novel preoperative planning system is proposed that allows patient-individual shaping of catheters to facilitate the correct positioning of the catheter sheath by offering a patient-specific catheter shape. Based on preoperative three-dimensional image data, anatomical points and the planned implant position are marked interactively and a patient-specific catheter shape is calculated if the standard catheter is not considered as suitable. An approach to calculate a catheter shape with four bends by maximization of the bending radii is presented. Shaping of the catheter is supported by a bending form that is automatically generated in the planning program and can be directly manufactured by using additive manufacturing methods.
Results: The feasibility of the planning and shaping of the catheter could be successfully shown using six data sets. The patient-specific catheters were tested in comparison with standard catheters by physicians on heart models. In four of the six tested models, the participating physicians rated the patient-individual catheters better than the standard catheter.
Conclusion: The novel approach for preoperatively planned and shaped patient-specific catheters designed for the minimally invasive closure of the left atrial appendage could be successfully implemented and a feasibility test showed promising results in anatomies that are difficult to access with the standard catheter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-018-1752-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!