Purpose: Antazoline is a first-generation antihistaminic agent with additional anticholinergic properties and antiarrhythmic potential. Recent data shows its high effectiveness in sinus rhythm restoration among patients with paroxysmal atrial fibrillation. The effect of antazoline on electrophysiological parameters of the heart in vivo has not yet been examined. The aim of this study was to evaluate changes in electrophysiological parameters of the heart muscle and conduction system as a response to increasing doses of antazoline.
Methods: After successful ablation of supraventricular arrhythmias, the electrophysiological parameters: sinus rhythm cycle length (SRCL), AH, HV, QRS, QT, QTc intervals, Wenckebach point (WP), sinus node recovery period (SNRT), intra- (hRA-CSos) and interatrial conduction time (hRA-CSd), right and left atrium refractory period (RA-; LA-ERP), and atrioventricular node refractory period (AVN-ERP) were assessed initially and after 100, 200, and 300 mg of antazoline given intravenously.
Results: Fifteen patients (8 males, 19-72 years old) undergoing EPS and RF ablation were enrolled. After 100 mg bolus, a significant reduction in SRCL was noticed. After antazoline administration, significant prolongation of HV, QRS, QTc, hRA-CSos, hRA-CSd intervals, RA- and LA-ERP and reduction of SRCL were observed. After a total dose of 300 mg, QT interval prolonged significantly. Increasing the dose of antazoline had no impact on AH, Wenckebach point, AVN-ERP, and SNRT.
Conclusion: Antazoline has an effect on electrophysiological parameters of the atrial muscle and has rapid onset of action. No negative effect on sinus node function and atrioventricular conduction in a unique property among antiarrhythmic drugs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5958171 | PMC |
http://dx.doi.org/10.1007/s10557-018-6787-9 | DOI Listing |
JACC Clin Electrophysiol
December 2024
St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom. Electronic address:
Background: The sympathetic autonomic nervous system plays a major role in arrhythmia development and maintenance. Historical preclinical studies describe preferential increases in cardiac sympathetic tone upon selective stimulation of the subclavian ansae (SA), a nerve cord encircling the subclavian artery.
Objectives: This study sought to define, for the first time, the functional anatomy and physiology of the SA in humans using a percutaneous approach.
Acad Radiol
January 2025
Department of Orthopedics and Traumatology, Samsun University Faculty of Medicine, Samsun, Turkey (A.E.O.).
Rationale And Objectives: This study aimed to evaluate the efficacy of ultrasound (US)-guided local steroid injection in carpal tunnel syndrome (CTS) using shear wave elastography (SWE).
Materials And Methods: A total of 47 wrists from 41 patients diagnosed with mild to moderate idiopathic CTS, based on clinical and electrophysiological criteria, were enrolled between June and October 2024. All participants underwent US-guided local steroid injection.
Cortex
December 2024
Cognitive Neuroscience, Institute of Neuroscience & Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
The precise cognitive mechanisms underlying spatial neglect are not fully understood. Recent studies have provided the first evidence for aberrant behavioral and electrophysiological prediction and prediction error responses in patients with neglect, but also in right-hemispheric (RH) stroke patients without neglect. For prediction-dependent attention, as assessed with Posner-type cueing paradigms with volatile cue-target contingencies, studies in healthy volunteers point to a crucial role of the right temporo-parietal junction (rTPJ) - as part of a network commonly disrupted in neglect.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia.
Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, United States; Department of Medicine, Johns Hopkins University, Baltimore, MD, 21205, United States; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, 21218, United States; Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, United States. Electronic address:
Cardiotoxicity remains a major challenge in drug development, accounting for 45% of medication withdrawals due to cardiac ischemia and arrhythmogenicity. To overcome the limitations of traditional multielectrode array (MEA)-based cardiotoxicity assays, we developed a Nafion-coated NanoMEA platform with decoupled reference electrodes, offering enhanced sensitivity for electrophysiological measurements. The 'Decoupled' configuration significantly reduced polarization resistance (Rp) from 12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!