3D magnetic hollow porous CdFeO microspheres (3D MHPS-CdFe2O4) were prepared by a one-step and template-free hydrothermal method. The material was applied for magnetic solid phase extraction of three azo colorants (Acid Red, Congo Red, Sunset Yellow). Compared to conventional CdFeO nanoparticles, the new 3D material exhibits superior extraction capability because of its unique hollow porous structure, high specific surface area, and the strong interaction between 3D microspheres and the colorants. A magnetic solid phase extraction (MPSE) combined with HPLC was established for simultaneous detection of the three azo colorants in food samples. Under optimum conditions, the detection limits are 0.54-1.00 ng mL, and good recoveries of 87.0-100.7% were obtained with spiked samples, with relative standard deviation of ≤ 3.8%. The combination of using the new 3D material and MPSE-HPLC results in an efficient, sensitive and inexpensive method for simultaneous determination of such colorants. Graphical abstract Schematic of the preparation of 3D magnetic hollow porous CdFeO microspheres as solid phase extractant for simultaneous trace detection of three azo colorants in real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-018-2780-z | DOI Listing |
J Sep Sci
January 2025
Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
Herein, an amino-functionalized covalent organic framework was synthesized and accommodated in the pores of porous hollow fiber. In this context, tetra (4-aminophenyl) porphyrin was synthesized for preparing the desired covalent organic framework as the extracting sorbent and employed for hollow fiber solid-phase microextraction of tebuconazole and propiconazole. With respect to the amino groups of the as-synthesized porphyrin-based covalent organic framework, the extracting device has the ability of establishing a hydrogen bond with the selected model analytes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFSmall
January 2025
NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA.
Since the explosive growth of state-of-the-art electronics and devices raises concerns about electromagnetic pollution, exploring novel and efficient electromagnetic interference (EMI) shielding materials is desirable and crucial. TiCT MXenes hold significant EMI shielding potential due to their inherent characteristics, including lightweight, metal-like conductivities, unique layered structure, and facile processing. Nonetheless, it remains challenging to fabricate TiCT MXenes-based EMI shielding materials with efficient shielding capability and low reflection.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.
Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!