A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Novel Fully Organic Water Oxidation Electrocatalysts: A Quest for Simplicity. | LitMetric

Novel Fully Organic Water Oxidation Electrocatalysts: A Quest for Simplicity.

ACS Omega

Department of Chemistry and Pharmacy, Chair of Thin Film Materials Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 1, 91058 Erlangen, Germany.

Published: March 2018

Despite the growing need for readily available and inexpensive catalysts for the half-reactions involved in water splitting, water oxidation and reduction electrocatalysts are still traditionally based on noble metals. One long-standing challenge has been the development of an oxygen evolution reaction catalyzed by easily available, structurally simple, and purely organic compounds. Herein, we first generalize the performance of the known -ethyl-flavinium ion to a number of derivatives. Furthermore, we demonstrate an unprecedented application of different pyridinium and related salts as very simple, inexpensive water oxidation organocatalysts consisting of earth-abundant elements (C, H, O, and N) exclusively. The results establish the prospects of heterocyclic aromatics for further design of new organic electrocatalysts for this challenging oxidation reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5879458PMC
http://dx.doi.org/10.1021/acsomega.7b01982DOI Listing

Publication Analysis

Top Keywords

water oxidation
12
novel fully
4
fully organic
4
water
4
organic water
4
oxidation
4
oxidation electrocatalysts
4
electrocatalysts quest
4
quest simplicity
4
simplicity despite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!