Interstitial lung diseases (ILD) involve several abnormal imaging patterns observed in computed tomography (CT) images. Accurate classification of these patterns plays a significant role in precise clinical decision making of the extent and nature of the diseases. Therefore, it is important for developing automated pulmonary computer-aided detection systems. Conventionally, this task relies on experts' manual identification of regions of interest (ROIs) as a prerequisite to diagnose potential diseases. This protocol is time consuming and inhibits fully automatic assessment. In this paper, we present a new method to classify ILD imaging patterns on CT images. The main difference is that the proposed algorithm uses the entire image as a holistic input. By circumventing the prerequisite of manual input ROIs, our problem set-up is significantly more difficult than previous work but can better address the clinical workflow. Qualitative and quantitative results using a publicly available ILD database demonstrate state-of-the-art classification accuracy under the patch-based classification and shows the potential of predicting the ILD type using holistic image.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881940 | PMC |
http://dx.doi.org/10.1080/21681163.2015.1124249 | DOI Listing |
Stem Cells Int
January 2025
Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.
Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention.
View Article and Find Full Text PDFAm J Surg Pathol
January 2025
Departments of Pathology.
Proliferations of neoplastic perivascular epithelioid cells (PECs) may occur within the lung and extrathoracic sites. The term "PEComatosis" is applied to multiple or diffuse microscopic proliferations of neoplastic PECs. Pulmonary diffuse PEComatosis is extremely rare, with only one case documented in the literature to date.
View Article and Find Full Text PDFAlveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo.
View Article and Find Full Text PDFJ Rheumatol
January 2025
J.A. Sparks, MD, MMSc, Brigham and Women's Hospital, Division of Rheumatology, Inflammation, and Immunity and Harvard Medical School, Boston, Massachusetts, USA.
Objective: To investigate baseline and change of pulmonary damage biomarkers (serum Krebs von den Lungen 6 [KL-6], human surfactant protein D [hSP-D], and matrix metalloproteinase 7 [MMP-7]) with rheumatoid arthritis-associated interstitial lung disease (RA-ILD) progression.
Methods: In the Korean Rheumatoid Arthritis Interstitial Lung Disease (KORAIL) cohort, a prospective cohort, we enrolled patients with RA and ILD confirmed by chest computed tomography imaging and followed annually. ILD progression was defined as worsening in physiological and radiological domains of the 2022 American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society guideline for progressive pulmonary fibrosis (PPF).
Phytomedicine
December 2024
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!