Background: The first Ebola virus disease (EVD) case in the United States (US) was confirmed September 30, 2014 in a man 45 years old. This event created considerable media attention and there was fear of an EVD outbreak in the US.
Methods: This study examined whether emergency department (ED) visits changed in metropolitan Dallas-Fort Worth--, Texas (DFW) after this EVD case was confirmed. Using Texas Health Services Region 2/3 syndromic surveillance data and focusing on DFW, interrupted time series analyses were conducted using segmented regression models with autoregressive errors for overall ED visits and rates of several chief complaints, including fever with gastrointestinal distress (FGI). Date of fatal case confirmation was the "event."
Results: Results indicated the event was highly significant for ED visits overall (P<0.05) and for the rate of FGI visits (P<0.0001). An immediate increase in total ED visits of 1,023 visits per day (95% CI: 797.0, 1,252.8) was observed, equivalent to 11.8% (95% CI: 9.2%, 14.4%) increase ED visits overall. Visits and the rate of FGI visits in DFW increased significantly immediately after confirmation of the EVD case and remained elevated for several months even adjusting for seasonality both within symptom specific chief complaints as well as overall.
Conclusions: These results have implications for ED surge capacity as well as for public health messaging in the wake of a public health emergency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5878099 | PMC |
http://dx.doi.org/10.1371/currents.outbreaks.e62bdea371ef5454d56f71fe217aead0 | DOI Listing |
J Infect Public Health
December 2024
Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. Electronic address:
Introduction: Ebola virus (EBOV) is a highly lethal RNA virus that causes severe hemorrhagic fever in humans and non-human primates. The lack of effective treatment or vaccine for this pathogen poses a serious threat to a global pandemic. Therefore, it is imperative to explore new drugs and therapies to combat this life-threatening infection.
View Article and Find Full Text PDFImmunology
January 2025
The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Many virus species, including Ebola virus, Marburg virus, SARS-CoV-2, dengue virus (DENV) and Zika virus (ZIKV), exploit CD209 and CD209L as alternative or attachment receptors for viral cis- or trans-infection. Thus, CD209 and CD209L may be critical targets for the development of therapeutic monoclonal blocking antibody drugs to disrupt the infection process caused by multiple viruses. Here, we produced a human chimeric monoclonal blocking antibody that simultaneously blocks CD209 and CD209L, namely 7-H7-B1.
View Article and Find Full Text PDFCan Commun Dis Rep
January 2025
Centre for Communicable Disease and Infection Control, Public Health Agency of Canada, Ottawa, ON.
Background: Ugandan health authorities declared an outbreak of Ebola disease (EBOD), caused by the Sudan virus, in September 2022. A rapid review was conducted to update the Public Health Agency of Canada's guidelines for infection prevention and control measures for EBOD in healthcare settings to prepare for potential introduction of cases.
Objective: Summarize the available evidence on personal protective equipment (PPE) use by healthcare workers (HCWs) to prevent exposure to and transmission of viral hemorrhagic fevers (VHFs), including Ebola virus.
Viruses
December 2024
Gilead Sciences, Inc., Foster City, CA 94404, USA.
Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.
View Article and Find Full Text PDFViruses
November 2024
Viral Immunology Branch, Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA.
The Ebola virus (EBOV) causes severe disease in humans, and animal models are needed to evaluate the efficacy of vaccines and therapeutics. While non-human primate (NHP) and rodent EBOV infection models have been well characterized, there is a growing need for an intermediate model. Here, we provide the first report of a small-particle aerosol (AE) EBOV ferret model and disease progression compared with the intramuscular (IM) EBOV ferret model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!