Objective: Previous animal studies have demonstrated that carbon nanotube (CNT) electrodes provide several advantages of preferential cell growth and better signal-to-noise ratio when interfacing with brain neural tissue. This work explores another advantage of CNT electrodes, namely their MRI compatibility. MRI-compatible neural electrodes that do not produce image artifacts will allow simultaneous co-located functional MRI and neural signal recordings, which will help improve our understanding of the brain.
Approach: Prototype CNT electrodes on polyimide substrates are fabricated and tested and in rat brain at 9.4T. To understand the results of the and studies, a simulation model based on numerical computation of the magnetic field around a two-dimensional object in a tissue substrate is developed.
Main Results: The prototype electrodes are found to introduce negligible image artifacts in structural and functional imaging sequences and . Simulation results confirm that CNT prototype electrodes produce less magnetic field distortion than traditional metallic electrodes due to a combination of both superior material properties and geometry. By using CNT films, image artifacts can be nearly eliminated at magnetic fields of strength up to 9.4T. At the same time, the high surface area of a CNT film provides high charge transfer and enables neural local field potential (LFP) recordings with an equal or better signal-to-noise ratio (SNR) than traditional electrodes.
Significance: CNT film electrodes can be used for simultaneous MRI and electrophysiology in animal models to investigate fundamental neuroscience questions and clinically relevant topics such as epilepsy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880054 | PMC |
http://dx.doi.org/10.1088/2057-1976/aa948d | DOI Listing |
Sci Adv
January 2025
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.
Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).
View Article and Find Full Text PDFSmall
January 2025
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.
View Article and Find Full Text PDFAnal Chem
January 2025
Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China.
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons and the accumulation of alpha-synuclein. Glutathione (GSH), a key antioxidant, is significantly depleted in PD patients. This study presents a dual-mode detection strategy for selectively determining GSH using a single probe.
View Article and Find Full Text PDFNanotechnology
January 2025
Muhayil Asir, Applied College, King Khalid University, Abha 62529, Saudi Arabia.
Water Res
January 2025
School of Science, RMlT University, Melbourne, VC 3000. Australia.
Electrochemical recovery of zero-valent sulfur (S) from thiourea (TU) wastewater offers a promising waste-to-value strategy that expects to promote the sulfur resource cycle in water treatment but still suffer from electrode poisoning and sulfur over-oxidation. Herein, we designed a metal-free CNT electrochemical membrane for selective oxidation of thiourea and recovery of S. We found that defect sites on the carbon nanotube surface enable direct electron transfer for thiourea oxidation and may form carbon-sulfur bridge bonds, thereby facilitating the generation of S and urea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!