Inflammatory bowel disease (IBD) is an inflammatory disorder of the gastrointestinal tract that is caused by multiple factors, including dysfunction of the immune system and genetic and epigenetic alterations. Aberrant epigenetic regulation, especially histone acetylation, was found in biopsies from IBD patients and mouse models of colitis, suggesting that an epigenetic treatment approach may be useful for IBD therapy. Therefore, we investigated the effects of the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA), in a mouse model of dextran sulfate sodium (DSS)-induced colitis. C57BL/6 mice were treated with 1.5% DSS for 5 days and/or SAHA (25 mg/kg BW/day) for 26 days. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-6 and tumor necrosis factor (TNF)-α, and the chemokines, Ccl2, were examined by qRT-PCR. CD11b, a marker of dendritic cells, macrophages, and monocytes, as well as Ccl2 expression, were examined by immunohistochemistry. IL-6, TNF-α, and Ccl2 gene expression peaked on day 5 in DSS-treated mouse colon, whereas SAHA treatment significantly decreased pro-inflammatory gene expression. Ccl2 protein expression resembled Ccl2 gene expression results. Moreover, localization of CD11b showed that migratory inflammatory cells were dramatically decreased by SAHA treatment compared to DSS-treated mouse colon. Thus, we conclude that the HDAC inhibitor, SAHA, attenuates inflammatory changes in DSS-induced colitis by suppressing local secretion of pro-inflammatory cytokines and chemokines and also by suppressing mobilization and accumulation of inflammatory cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880801PMC
http://dx.doi.org/10.1267/ahc.17033DOI Listing

Publication Analysis

Top Keywords

hdac inhibitor
12
pro-inflammatory cytokines
12
dss-induced colitis
12
gene expression
12
inhibitor saha
8
cytokines chemokines
8
ccl2 gene
8
dss-treated mouse
8
mouse colon
8
saha treatment
8

Similar Publications

Background: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common cause of age-related dementia, and the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles is associated with the neurodegeneration and cognitive impairment in this incurable disease. Growing evidence shows that epigenetic dysregulation through histone deacetylases (HDACs) plays a critical role in synaptic dysfunction and memory loss in AD, and HDACs have been highlighted as a novel class of anti-Alzheimer targets. Moreover, restoring Wnt/β-catenin signaling, which is greatly suppressed in AD brains, is a promising therapeutic strategy for AD.

View Article and Find Full Text PDF

Histone Deacetylase 6 (HDAC6) is an intriguing therapeutic target in cancer re-search, distinguished as the only HDAC family member predominantly located in the cyto-plasm. HDAC6 features two catalytic domains and a unique ubiquitin-binding domain, which sets it apart from other HDACs. Beyond its role in histone deacetylation, HDAC6 targets vari-ous nonhistone substrates, such as α-tubulin, cortactin, Heat Shock Protein 90 (HSP90), and Heat Shock Factor 1 (HSF1).

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.

View Article and Find Full Text PDF

The Chicken Promoter and Its Regulation by MYC and HIF1A.

Genes (Basel)

November 2024

Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

Background: Histone deacetylase 4 () is a member of the class II histone deacetylase family, whose members play a crucial role in various biological processes. An in-depth investigation of the transcriptional characteristics of chicken can provide fundamental insights into its function.

Methods: We examined expression in chicken embryonic stem cells (ESC) and spermatogonial stem cells (SSC) and cloned a 444 bp fragment from upstream of the chicken transcription start site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!