Rapid access to the core skeleton of the [3 + 2]-type dimeric pyrrole-imidazole alkaloids by triplet ketone-mediated C-H functionalization.

Tetrahedron

Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.

Published: February 2018

The ability of triplet ketones to abstract a hydrogen atom from hydrocarbons is reminiscent of that of the high-spin metal-oxo complexes in C-H oxidation enzymes. In practice, the reactivity of triplet ketones is easier to control and applicable to promoting a wider range of reactions. We demonstrate herein the synthetic utility of triplet ketone-mediated -addition of methanol to cyclopentenone derivatives with an expedient synthesis of the core skeleton of the [3+2]-type dimeric pyrrole-imidazole alkaloids. Remarkably, this photochemical C-H functionalization reaction is highly regioselective and can tolerate a good range of functional groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880548PMC
http://dx.doi.org/10.1016/j.tet.2017.12.027DOI Listing

Publication Analysis

Top Keywords

core skeleton
8
dimeric pyrrole-imidazole
8
pyrrole-imidazole alkaloids
8
triplet ketone-mediated
8
c-h functionalization
8
triplet ketones
8
rapid access
4
access core
4
skeleton 2]-type
4
2]-type dimeric
4

Similar Publications

Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review.

Bone Res

January 2025

Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Circadian rhythm is ubiquitous in nature. Circadian clock genes such as Bmal1 and Clock form a multi-level transcription-translation feedback network, and regulate a variety of physiological and pathological processes, including bone and cartilage metabolism. Deletion of the core clock gene Bmal1 leads to pathological bone alterations, while the phenotypes are not consistent.

View Article and Find Full Text PDF

Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip, osteoporosis and osteoarthritis. Our work addresses the critical question of how these skeletal pathologies emerge. Here, we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.

View Article and Find Full Text PDF

BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.

View Article and Find Full Text PDF

Background: Examining stress distributions in abutment teeth with periapical lesions is essential for understanding their biomechanical impact on dental structures and tissues. This study uses finite element analysis (FEA) to evaluate these stress patterns under occlusal forces, aiming to enhance treatment strategies and prosthetic designs.

Methods: Three FEA models were created: a healthy mandibular premolar (Model 1), a premolar with a single crown and a lesion repaired using a fiber-post (Model 2), and 3) a premolar with a lesion repaired using fiber-post to support a four-member bridge (Model 3).

View Article and Find Full Text PDF

Underlying Mechanisms of Chromatographic H/D, H/F, and Isomerism Effects in GC-MS.

Metabolites

January 2025

Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany.

Charge-free gaseous molecules labeled with deuterium H (D) atoms elute earlier than their protium-analogs H (H) from most stationary GC phases. This effect is known as the chromatographic H/D isotope effect (IE) and can be calculated by dividing the retention times () of the protiated ( ) to those of the deuterated () analytes: IE = /. Analytes labeled with C, N or O have almost identical retention times and lack a chromatographic isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!