Background: Deviation of mean arterial blood pressure (MAP) from the range that optimizes cerebral autoregulatory vasoreactivity (optimal MAP) could increase neurological injury from hypoxic-ischemic encephalopathy (HIE). We tested whether a global magnetic resonance imaging (MRI) brain injury score and regional diffusion tensor imaging (DTI) are associated with optimal MAP in neonates with HIE.
Methods: Twenty-five neonates cooled for HIE were monitored with the hemoglobin volume index. In this observational study, we identified optimal MAP and measured brain injury by qualitative and quantitative MRIs with the Neonatal Research Network (NRN) score and DTI mean diffusivity scalars. Optimal MAP and blood pressure were compared with brain injury.
Results: Neonates with blood pressure measurements within optimal MAP during rewarming had less brain injury by NRN score (P = 0.040). Longer duration of MAP within optimal MAP during hypothermia correlated with higher mean diffusivity in the anterior centrum semiovale (P = 0.008) and pons (P = 0.002). Blood pressure deviation below optimal MAP was associated with lower mean diffusivity in cerebellar white matter (P = 0.033). Higher optimal MAP values related to lower mean diffusivity in the basal ganglia (P = 0.021), the thalamus (P = 0.006), the posterior limb of the internal capsule (P = 0.018), the posterior centrum semiovale (P = 0.035), and the cerebellar white matter (P = 0.008). Optimal MAP values were not associated with the NRN score.
Conclusions: The NRN score and the regional mean diffusivity scalars detected injury with mean arterial blood pressure deviations from the optimal MAP. Higher optimal MAP and lower mean diffusivity may be related because of cytotoxic edema and limited vasodilatory reserve at low MAP in injured brain. DTI detected injury with elevated optimal MAP better than the NRN score.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960435 | PMC |
http://dx.doi.org/10.1016/j.pediatrneurol.2018.02.004 | DOI Listing |
J Chem Theory Comput
January 2025
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations.
View Article and Find Full Text PDFA more complete map of the pattern of genetic variation among inbred mouse strains is essential for characterizing the genetic architecture of the many available mouse genetic models of important biomedical traits. Although structural variants (SVs) are a major component of genetic variation, they have not been adequately characterized among inbred strains due to methodological limitations. To address this, we generated high-quality long-read sequencing data for 40 inbred strains; and designed a pipeline to optimally identify and validate different types of SVs.
View Article and Find Full Text PDFF1000Res
January 2025
Mathematics, Ambo University, Ambo, Oromia, Ethiopia.
This paper explores the concept of contractive mappings, contributing to the advancement of self-map extensions and fixed-point theorems within b-metric spaces. We introduce a new class of contractive mappings and demonstrate how they extend traditional contraction principles, offering a broader framework for analyzing fixed points in non-standard spaces. The main result of this study is a generalization of existing fixed-point theorems, supported by comprehensive corollaries, illustrative examples, and rigorous proofs.
View Article and Find Full Text PDFMicrosurgery
January 2025
Service de Chirurgie Plastique et Reconstructrice, Hôpital européen Georges-Pompidou, Paris, France.
Objective: The optimal method for maintaining intraoperative blood pressure during microsurgical procedures remains controversial. While intravenous fluid administration is essential, overfilling can lead to complications. Vasopressor agents are used cautiously due to their vasoconstrictive effects, which could potentially lead to flap failure.
View Article and Find Full Text PDFMed Phys
January 2025
Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, Canada.
Background: The treatment of glioblastomas (GBM) with radiation therapy is extremely challenging due to their invasive nature and high recurrence rate within normal brain tissue.
Purpose: In this work, we present a new metric called the tumour spread (TS) map, which utilizes diffusion tensor imaging (DTI) to predict the probable direction of tumour cells spread along fiber tracts. We hypothesized that the TS map could serve as a predictive tool for identifying patterns of likely recurrence in patients with GBM and, therefore, be used to modify the delivery of radiation treatment to pre-emptively target regions at high risk of tumour spread.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!