Background Aims: The immunomodulatory property of mesenchymal stromal cell (MSC) exosomes is well documented. On the basis of our previous report that MSC exosomes increased regulatory T-cell (Treg) production in mice with allogenic skin graft but not in ungrafted mice, we hypothesize that an activated immune system is key to exosome-mediated Treg production.
Methods: To test our hypothesis, MSC exosomes were incubated with mouse spleen CD4 T cells that were activated with either anti-CD3/CD28 mAbs or allogenic antigen-presenting cell (APC)-enriched spleen CD11c cells to determine whether production of mouse CD4CD25 T cells or CD4CD25Foxp3 Tregs could be induced. MSC exosomes were also administered to the lethal chimeric human-SCID mouse model of graft-versus-host disease (GVHD) in which human peripheral blood mononuclear cells were infused into irradiated NSG mice to induce GVHD.
Results: We report here that MSC exosome-induced production of CD4CD25 T cells or CD4CD25Foxp3 Tregs from CD4 T cells activated by allogeneic APC-enriched CD11C cells but not those activated by anti-CD3/CD28 mAbs. This induction was exosome- and APC dose-dependent. In the mouse GVHD model in which GVHD was induced by transplanted human APC-stimulated human anti-mouse CD4 T cell effectors, MSC exosome alleviated GVHD symptoms and increased survival. Surviving exosome-treated mice had a significantly higher level of human CD4CD25CD127 Tregs than surviving mice treated with Etanercept, a tumor necrosis factor inhibitor.
Conclusions: MSC exosome enhanced Treg production in vitro and in vivo through an APC-mediated pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcyt.2018.02.372 | DOI Listing |
Curr Issues Mol Biol
November 2024
Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.
View Article and Find Full Text PDFCommun Biol
December 2024
Department of Vascular surgery, The Third Xiangya Hospital Central South University, Changsha, 410000, Hunan Province, PR China.
Diabetic foot ulcer (DFU) is a common but devastating complication of diabetes mellitus and might ultimately lead to amputation. Elucidating the regulatory mechanism of wound healing in DFU is quite important for developing DFU management strategies. Here, we show, mecenchymal stem cell (MSC)-derived exosomes promoted the proliferation, migration and angiogenesis of high glucose-treated endothelial cells and reduced cell apoptosis.
View Article and Find Full Text PDFBiol Direct
December 2024
Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
Background: Alveolar macrophages (AMs) is critical to exacerbate acute lung injury (ALI) induced by lipopolysaccharide (LPS) via inhibiting inflammation, which could by shifted by mesenchymal stem cell-derived exosomes (MSC-exos). But the underlying rationale is not fully clarified. Our study aimed to analyze the significance of itaconic acid (ITA) in mediating the protective effects of MSC-exos on LPS-induced ALI.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
Introduction: Pulmonary hypertension (PH) is a progressive and life-threatening condition. Recent research has demonstrated that exosomes derived from mesenchymal stem cells (MSC) exhibit significant therapeutic potential in the treatment of PH. The composition of these exosomes is often substantially influenced by the characteristics of their parental cells.
View Article and Find Full Text PDFStem Cells Int
December 2024
Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
Burns are a global public health issue and a major cause of disability and death around the world. Stem cells, which are the undifferentiated cells with the potential for indefinite proliferation and multilineage differentiation, have the ability to replace injured skin and facilitate the wound repair process through paracrine mechanisms. In light of this, the present study aims to conduct a bibliometric analysis in order to identify research hotspots of stem cell-related burns and assess global research tendencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!