Amantadine (AMD), a banned antiviral veterinary drug, is still being abused. This study developed a novel enzyme linked immunosorbent assay for the colorimetric detection of AMD involving DNA hybridization reaction and non-crosslinking gold nanoparticles (AuNPs) aggregation. Accordingly, the Primer 1-AuNPs-anti-AMD monoclonal antibody (mAb) could be captured by AMD artificial antigen on ELISA wells. Primer 2, which was complementary paired to Primer 1, was eventually added into the ELISA wells. After the hybridization reaction, the free Primer 2 in the supernatant was mixed with AuNPs and NaCl and induced a rapid color change of AuNPs. The lack of AMD in the sample resulted in capturing a substantial Primer 1-AuNPs-mAb complex and limited free Primer 2 in the supernatant. After adding NaCl, the color of AuNPs turned blue with limited Primer 2. This simple and visualized novel method had good sensitivity (0.033 μM) and exhibited a potential application for AMD screening on site.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2018.03.033DOI Listing

Publication Analysis

Top Keywords

hybridization reaction
12
dna hybridization
8
reaction non-crosslinking
8
non-crosslinking gold
8
gold nanoparticles
8
elisa wells
8
free primer
8
primer supernatant
8
primer
7
amd
5

Similar Publications

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Background: Cervical cancer is the most prevalent cancer in Mozambique, with endocervical adenocarcinoma accounting for approximately 5.5% of cases. Knowledge regarding the most prevalent HPV genotypes in endocervical adenocarcinoma is limited, within this setting.

View Article and Find Full Text PDF

Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.

View Article and Find Full Text PDF

Deletion of FgAtg27 decreases the pathogenicity of Fusarium graminearum through influence autophagic process.

Int J Biol Macromol

January 2025

Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:

Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.

View Article and Find Full Text PDF

Cu-EAB zeolite catalyst: A promising candidate with excellent SO poisoning resistance for NH-SCR reaction.

J Hazard Mater

January 2025

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

In this work, we synthesized Cu-EAB catalysts with an EAB topology for the NH-SCR of NO and evaluated their resistance to SO poisoning for the first time. The Cu-EAB catalyst showed superior NO conversion and selectivity for N, along with a notable tolerance to high space velocities and SO, outperforming the commercial Cu-CHA catalyst. This enhanced resistance was attributed to the Cu species formation at the 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!