Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes.

Water Res

Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, Campus of International Excellence of the Sea (CEI·MAR), Río San Pedro, Puerto Real, 11510, Cadiz, Spain. Electronic address:

Published: August 2018

Microalgae biotechnology is a promising tool for many applications, including the elimination of nutrients and other contaminants from wastewater. In this work, we measured the removal efficiency of two wastewater treatment processes: an activated-sludge based conventional process and another based on microalgae biotechnology using high-rate algae ponds (HRAPs). The latter was tested using two different configurations. In the first one, HRAPs were placed after an UASB reactor and used as a tertiary treatment to remove nutrients. In the second, the UASB reactor was disconnected so the HRAPs were directly fed with pretreated wastewater. Additional treatment was performed using dissolved air flotation (DAF). The performances of both configurations (UASB-HRAP and HRAP-DAF) were compared to that of the conventional line including primary and secondary biological treatments and operating in parallel within the same wastewater treatment plant (WWTP). Sixty-four out of 81 target PhACs were detected in the influent of the WWTP, at an average concentration of 223 μg L, whereas 55 and 54 were measured in the conventional (14 μg L) and non-conventional (17 μg L) effluents. Average removal efficiencies were similar (94 vs. 92%) for both treatment lines when comparing total PhACs concentrations. The compositional patterns of the resulting effluents, however, were not, suggesting the occurrence of differential removal mechanisms depending on the chemicals and wastewater treatments considered. Highly consumed compounds such as ibuprofen and acetaminophen were predominant in the non-conventional effluent (>1 μg L), denoting lower removal than in the conventional line. On the other hand, elimination of diclofenac and some specific antibiotics and diuretics (e.g., hydrochlorothiazide) was between 15 and 50% higher using HRAPs. Overall, the efficiency of the microalgae technology removing PhACs was found to be comparable to that used in conventional WWTPs. This, combined with a higher efficiency removing nutrients, shows the potential of HRAP technology for wastewater treatment as an alternative (or addition as tertiary treatment) to more conventional approaches based on activated sludge.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2018.03.072DOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
activated sludge
8
microalgae biotechnology
8
uasb reactor
8
tertiary treatment
8
wastewater
7
treatment
7
conventional
6
removal
5
based
5

Similar Publications

Residual antimicrobial agents in wastewater and solid waste from antimicrobial manufacturing facilities can potentially contaminate environments. The World Health Organization has established technical guidelines for managing antimicrobial resistance (AMR) in pharmaceutical wastewater and solid waste. However, the scarcity of publicly available data on antimicrobial manufacturing processes impedes the development of effective mitigation strategies.

View Article and Find Full Text PDF

Introduction: The establishment of a high-throughput quantification approach for waterborne pathogenic protozoa and helminths is crucial for rapid screening and health risk assessment.

Methods: We developed a high-throughput quantitative polymerase chain reaction (HT-qPCR) assay targeting 19 waterborne protozoa and 3 waterborne helminths and validated its sensitivity, specificity, and repeatability. The assay was then applied to test various environmental media samples.

View Article and Find Full Text PDF

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

An integrated strategy for sequential nitrite removal and methane recovery: Sludge fermentation driven by nitrite reduction.

Water Res X

May 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.

Although the treatment of sludge with free nitrous acid can effectively recover short chain fatty acids, the feasibility of sequential nitrite reduction and methane recovery without acidic pH adjustment is still scarcely studied. Therefore, this study aimed to provide insights into the effect of nitrite at different levels on nitrite reduction and methane production. The results showed that the nitrite concentrations of 100, 200, 400 and 800 mg/L were completely reduced in 1, 2, 2 and 4 days, respectively.

View Article and Find Full Text PDF

Pickering emulsions (PEs) have demonstrated significant potential in various fields, including catalysis, biomedical applications, and food science, with notable advancements in wastewater treatment through photocatalysis. This study explores the development and application of TiO-poly(-isopropylacrylamide) (pNIPAm) composite gels as a novel framework for photocatalytic wastewater remediation. The research focuses on overcoming challenges associated with conventional nanoparticle-based photocatalytic systems, such as agglomeration and inefficient recovery of particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!